Toggle light / dark theme

They found that when people with aphantasia try to conjure an image in their mind’s eye, the primary visual cortex – the part of the brain that processes picture-like visual information – is activated, but any images that are produced remain unconscious to the individual.

Published today in Current Biology, opens in a new window, the study, carried out by scientists at UNSW and South China Normal University, used a range of techniques to measure brain activity. Their findings challenge the existing theory that activity in the primary visual cortex directly produces conscious visual imagery.

“People with aphantasia actually do seem to have images of a sort, they remain too weak or distorted to become conscious or be measured by our standard measurement techniques,” says Prof. Joel Pearson, a co-author of the study based at UNSW’s School of Psychology, opens in a new window. “This may be because the visual cortex is wired differently, as evidenced by the data in this new study. This research not only deepens our understanding of the brain but also pushes the boundaries of how we think about imagination and consciousness.”

In 1956, a small group of scientists gathered for the Dartmouth Summer Research Project on Artificial Intelligence, which was the birth of this field of research.

To celebrate the anniversary, more than 100 researchers and scholars again met at Dartmouth for AI@50, a conference that not only honored the past and assessed present accomplishments, but also helped seed ideas for future artificial intelligence research.

The initial meeting was organized by John McCarthy, then a mathematics professor at the College. In his proposal, he stated that the conference was “to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it.”

A new biodegradable electrode stimulates brain repair by activating neural precursor cells, dissolving naturally after a week. This breakthrough could transform treatments for neurological disorders like stroke.


Summary: Researchers have developed a flexible, biodegradable electrode capable of stimulating neural precursor cells (NPCs) in the brain, offering a safer and more precise alternative for neural repair. The electrode dissolves naturally after seven days, eliminating the need for surgical removal while promoting tissue regeneration.

Made from FDA-approved materials, the device successfully increased NPC activity in preclinical models without causing significant inflammation or damage. This innovation could significantly expand treatment options for neurological disorders, which are a leading cause of disability worldwide.

Future developments aim to integrate drug and gene therapy delivery into the electrodes for enhanced therapeutic potential.

Western researchers have developed a novel technique using math to understand exactly how neural networks make decisions—a widely recognized but poorly understood process in the field of machine learning.

Many of today’s technologies, from digital assistants like Siri and ChatGPT to and self-driving cars, are powered by machine learning. However, the —computer models inspired by the —behind these machine learning systems have been difficult to understand, sometimes earning them the nickname “” among researchers.

“We create neural networks that can perform , while also allowing us to solve the equations that govern the networks’ activity,” said Lyle Muller, mathematics professor and director of Western’s Fields Lab for Network Science, part of the newly created Fields-Western Collaboration Centre. “This mathematical solution lets us ‘open the black box’ to understand precisely how the network does what it does.”

A team of researchers has made a remarkable breakthrough in spintronic technology, achieving a one-directional flow of spin-polarized current in a single-atom layer of thallium-lead alloys.

This advancement not only challenges traditional views of material interaction with light but also heralds the development of ultra-fine, environmentally friendly data storage for the future.

Groundbreaking Discovery in Spintronic Technology.

In February 2016, scientists working for the Laser Interferometer Gravitational-Wave Observatory (LIGO) made history by announcing the first-ever detection of gravitational waves (GW). These waves, predicted by Einstein’s Theory of General Relativity, are created when massive objects collide (neutron stars or black holes), causing ripples in spacetime that can be detected millions or billions of light years away. Since their discovery, astrophysicists have been finding applications for GW astronomy, which include probing the interiors of neutron stars.

For instance, scientists believe that probing the continuous gravitational wave (CW) emissions from neutron stars will reveal data on their internal structure and equation of state and can provide tests of General Relativity. In a recent study, members of the LIGO-Virgo-KAGRA (LVK) Collaboration conducted a search for CWs from 45 known pulsars. While their results showed no signs of CWs emanating from their sample of pulsars, their work does establish upper and lower limits on the signal amplitude, potentially aiding future searches.

The LVK Collaboration is an international consortium of scientists from hundreds of universities and institutes worldwide. This collaboration combines data from the Laser Interferometer Gravitational-Wave Observatory’s (LIGO) twin observatories, the Virgo Observatory, and the Kamioka Gravitational Wave Detector (KAGRA). The preprint of the paper, “Search for continuous gravitational waves from known pulsars in the first part of the fourth LIGO-Virgo-KAGRA observing run,” recently appeared online.

Zerodha co-founder Nithin Kamath triggered a conversation online after he shared the wisdom of 92-year-old US-based mathematician and professor Edward Thorp on longevity on social media.

In a post on X, Kamath praised Thorp’s advice, calling it “brilliant” and stating, “This is the only longevity expert you need to listen to.”

Thorp’s message delves into a balanced approach to living a long and healthy life. His philosophy combines “defence,” which involves mitigating risks like cardiovascular diseases through diet, exercise, and regular check-ups, and “offence,” with an emphasis on exercise as a “magic bullet” to extend both lifespan and health span.

DLB is a common cause of dementia. It starts by the abnormal accumulation of the protein alpha-synuclein in the brain. This produces degeneration of the brain and causes problems with thinking, movement, and behavior. Eventually, the disease leads to dementia and death. Doctors use a imaging technique called FDG-PET to assess how the brain is affected in DLB. However, until now, there was no information on how these brain changes develop over time.

The study, led by Dr. Daniel Ferreira at the Department of Neurobiology, Care Sciences and Society, followed 35 patients with DLB, 37 patients with early-stage DLB (called prodromal DLB), and 100 healthy people from Mayo Clinic (USA), for an average of 3.8 years. The researchers found that brain degeneration starts early in prodromal DLB and worsens as the disease progresses.

“We discovered that people with prodromal DLB had faster degeneration in certain brain areas compared to healthy individuals,” said Dr. Ferreira.” This information is crucial for monitoring disease progression from early stages and planning clinical trials for new treatments.”

longitudinal FDG-PET metabolic change along the lewy body.

Second, Synchron will explore the development of a groundbreaking foundation model for brain inference. By processing Synchron’s neural data on an unprecedented scale, this initiative will create scalable, interpretable brain-language models with the potential to transform neuroprosthetics, cognitive expression, and seamless interaction with digital devices.

“Synchron’s vision is to scale neurotechnology to empower humans to connect to the world, and the NVIDIA Holoscan platform provides the ideal foundation,” said Tom Oxley, M.D., Ph.D., CEO & Founder, Synchron. “Through this work, we’re setting a new benchmark for what BCIs can achieve.”


NEW YORK—()— Synchron, a category-defining brain-computer interface (BCI) company, announced today a step forward in implantable BCI technology to drive the future of neurotechnology. Synchron’s BCI technology, in combination with the NVIDIA Holoscan platform, is poised to redefine the possibilities of real-time neural interaction and intelligent edge processing.

Synchron will leverage NVIDIA Holoscan to advance a next-generation implantable BCI in two key domains. First, Synchron will enhance real-time edge AI capabilities for on-device neural processing, improving signal processing and multi-AI inference technology. This will reduce system latency, bolster privacy, and provide users with a more responsive and intuitive BCI experience. NVIDIA Holoscan provides Synchron with: (i) a unified framework supporting diverse AI models and data modalities; (ii) an optimized application framework, from seamless sensor I/O integration, GPU-direct data ingestion, to accelerated computing and real-time AI.