Toggle light / dark theme

Year 2021 face_with_colon_three


Communication between brain activity and computers, known as brain-computer interface or BCI, has been used in clinical trials to monitor epilepsy and other brain disorders. BCI has also shown promise as a technology to enable a user to move a prosthesis simply by neural commands. Tapping into the basic BCI concept would make smart phones smarter than ever.

Research has zeroed in on retrofitting wireless earbuds to detect neural signals. The data would then be transmitted to a smartphone via Bluetooth. Software at the smartphone end would translate different brain wave patterns into commands. The emerging technology is called Ear EEG.

Rikky Muller, Assistant Professor of Electrical Engineering and Computer Science, has refined the physical comfort of EEG earbuds and has demonstrated their ability to detect and record brain activity. With support from the Bakar Fellowship Program, she is building out several applications to establish Ear EEG as a new platform technology to support consumer and health monitoring apps.

The research, published in [Proceedings of the National Academy of Sciences](https://www.pnas.org/cgi/doi/10.1073/pnas.2416106122), highlights the new drug’s potential as a treatment option for conditions like schizophrenia, where psychedelics are not prescribed for safety reasons. The compound also may be useful for treating other neuropsychiatric and neurodegenerative diseases characterized by synaptic loss and brain atrophy.

To design the drug, dubbed JRT, researchers flipped the position of just two atoms in LSD’s molecular structure. The chemical flip reduced JRT’s hallucinogenic potential while maintaining its neurotherapeutic properties, including its ability to spur neuronal growth and repair damaged neuronal connections that are often observed in the brains of those with neuropsychiatric and neurodegenerative diseases.


Decreased dendritic spine density in the cortex is a key pathological feature of neuropsychiatric diseases including depression, addiction, and schizophrenia (SCZ). Psychedelics possess a remarkable ability to promote cortical neuron growth and increase spine density; however, these compounds are contraindicated for patients with SCZ or a family history of psychosis. Here, we report the molecular design and de novo total synthesis of (+)-JRT, a structural analogue of lysergic acid diethylamide (LSD) with lower hallucinogenic potential and potent neuroplasticity-promoting properties. In addition to promoting spinogenesis in the cortex, (+)-JRT produces therapeutic effects in behavioral assays relevant to depression and cognition without exacerbating behavioral and gene expression signatures relevant to psychosis.

The study notes, “These findings underscore the complexity of Europa’s plume activity. Our results provide a framework to explore various plume characteristics, including gas drag, particle size, initial ejection velocities, and gas production rates, and the resulting plume morphologies and deposition outcomes.”


How do the water vapor plumes on Jupiter’s icy moon, Europa, contribute to the interaction between the moon’s surface and subsurface environments? This is what a recent study published in The Planetary Science Journal hopes to address as a team of researchers investigated how gas drag could influence the direction of particles being emitted by Europa’s water vapor plumes, specifically regarding where they land on the surface, either near the plumes or farther out. This study has the potential to help scientists better understand the surface-subsurface interactions on Europa and what this could mean for finding life as we know it.

Artist’s illustration of Europa’s water vapor plumes. (Credit: NASA/ESA/K. Retherford/SWRI)

For the study, the researchers used a series of computer models to simulate how the speed and direction of dust particles emitted from the plumes could be influenced by a process called gas drag, which could decrease the speed and direction of dust particles exiting the plumes. In the end, the researchers found that gas drag greatly influences dust behavior, with smaller dust particles ranging in size from 0.001 to 0.1 micrometers becoming more spread out after eruption and larger dust particles ranging in size from 0.1 to 10 micrometers landing near the plume sites.

Tesla is navigating challenges in the EV market, including supply chain issues and production adjustments, while maintaining optimism about advancements in self-driving technology and preparing for future earnings ## Questions to inspire discussion ## Tesla’s FSD Progress.

🚗 Q: How has Tesla’s FSD version 13 performed in recent tests? A: FSD v13 on hardware 4 showed incredible performance with no unplanned disengagements over 490 miles of winding mountain and coastal roads, including navigating flagger-regulated oncoming traffic.

🌎 Q: What are the expectations for Tesla’s FSD version 14? A: FSD v14 is expected to be overfit for Austin and potentially deployed unsupervised globally in a short timeframe, subject to regulatory approval. Tesla’s Manufacturing and Supply Chain.

🔋 Q: How is Tesla addressing rare earth element concerns in motor production? A: Tesla’s rare earth free motors use 25% less rare earth elements than industry average, positioning them well against China’s export controls on 7 rare earth elements, including neodymium.

📊 Q: What insights might Tesla’s upcoming earnings call provide? A: The April 22nd earnings call will likely address supply chain and margin impacts from China’s rare earth export controls, battery supply constraints, and tariff effects. Tesla’s Product Updates.

📷 Q: What undocumented changes are included in Tesla’s AI4 vehicles spring release? A: The release includes a wider angle rear view, side repeater cameras at the top, and B-pillar dash cam and Sentry mode video recording capabilities.

Tesla is advancing its full self-driving technology in Austin, Texas, with plans for an unsupervised robo taxi service by June 2025, positioning itself for significant revenue growth and regulatory approval through enhanced safety and efficiency ## ## Questions to inspire discussion Operational Efficiency.

🏭 Q: How is Tesla using unsupervised FSD at Giga Texas? A: Tesla is using unsupervised FSD to drive new Model Y and Cybertruck units from production lines to outbound logistics lots, logging over 50,000 driverless miles between Texas and Fremont factory deployments.

💰 Q: What are the benefits of automating car movement at Giga Texas? A: Automating car movement reduces labor costs, improves throughput, creates a scalable logistics model, and boosts production margins. Regulatory Advantage.

🚗 Q: How does Tesla benefit from Texas regulations regarding autonomous vehicles? A: Texas laws don’t require permits for autonomous vehicles, providing Tesla with a regulatory advantage and a lower-risk proving ground before public rollout of robo taxis. Technological Edge.

🖥️ Q: What hardware advantages does Tesla’s FSD system have over competitors? A: Tesla’s vision-only FSD with Tesla-designed HW4 uses no LIDAR or radar, accelerating the data flywheel with unsupervised miles accumulated. Future Prospects.

🚕 Q: When and where will Tesla launch its first public unsupervised robo taxi service? A: Tesla plans to launch its first public unsupervised robo taxi service in Austin as a pilot rollout in June 2025.