Toggle light / dark theme

Soon humanity may reach out to the galaxy and spread ourselves to every world in it, but in the billions and billions of years to come on those billions and billions of worlds, humanity shall surely diverge down many roads and posthuman pathways.

Watch my exclusive video Caretaker AI \& Genus Loci: https://nebula.tv/videos/isaacarthur–… Get Nebula using my link for 40% off an annual subscription: https://go.nebula.tv/isaacarthur.
Get a Lifetime Membership to Nebula for only $300: https://go.nebula.tv/lifetime?ref=isa… Use the link gift.nebula.tv/isaacarthur to give a year of Nebula to a friend for just $30.

Visit our Website: http://www.isaacarthur.net.
Join Nebula: https://go.nebula.tv/isaacarthur.
Support us on Patreon: / isaacarthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-a
Facebook Group: / 1583992725237264
Reddit: / isaacarthur.
Twitter: / isaac_a_arthur on Twitter and RT our future content.
SFIA Discord Server: / discord.

Credits:

OpenAI’s researcher in charge of making sure the company (and the world) is prepared for the advent of artificial general intelligence (AGI) has resigned — and is warning that nobody is ready for what’s coming next.

In a post on his personal Substack, the firm’s newly-resigned AGI readiness czar Miles Brundage said quitting his “dream job” after six years has been difficult. He says he’s doing so because he feels a great responsibility regarding the purportedly human-level artificial intelligence he believes OpenAI is ushering into existence.

“I decided,” Brundage wrote, “that I want to impact and influence AI’s development from outside the industry rather than inside.”

Can rocky exoplanets orbiting stars smaller than our Sun support life as we know it? This is what a recent study published in Nature Communications hopes to address as an international team of researchers examined the atmospheric stability of exoplanets orbiting M-dwarf stars, which typically range from 7.5 percent to 50 percent of our Sun’s mass and surface temperatures of approximately 3,500 degrees Celsius (6,300 degrees Fahrenheit) with our Sun boasting surface temperatures of approximately 5,000 degrees Celsius (9,000 degrees Fahrenheit). This study holds the potential to help astronomers better understand the conditions for finding life beyond Earth and where we can find it.

For the study, the researchers examined TRAPPIST-1, which is an M-dwarf star located approximately 40 light-years from Earth while boasting seven rocky exoplanets, several of which orbit within its star’s habitable zone (HZ). Using computer models, the team simulated the formation and evolution of the orbiting exoplanets to ascertain if their individual atmospheres could remain stable over time to form a habitable environment. In the end, the team found that the exoplanets that orbit close to their star likely do not possess stable atmospheres, but found promising results for exoplanets orbiting farther out, specifically TRAPPIST-1 e.

“One of the most intriguing questions right now in exoplanet astronomy is: Can rocky planets orbiting M-dwarf stars maintain atmospheres that could support life?” said Dr. Joshua Krissansen-Totton, who is an assistant professor of Earth and space sciences at the University of Washington and lead author of the study. “Our findings give reason to expect that some of these planets do have atmospheres, which significantly enhances the chances that these common planetary systems could support life.”

The Turing Award recipient told ET that the path to achieving AGI (artificial general intelligence) is through AI systems being conscious of the physical world, having persistent memory and being able to reason. This may take 6–10 years and still have the intelligence of a cat, he said on the sidelines of Meta’s Build with AI Summit in Bengaluru.

“I don’t like the phrase AGI. I prefer human-level intelligence because human intelligence is not general. Internally, we call this AMI-advanced machine intelligence. We have a pretty good plan on how to get there,” said LeCun is often referred to as a ‘Godfather of AI’

Researchers have identified a key mechanism in the development of Alzheimer’s disease involving the growth and pause of amyloid β fibrils.

A newly discovered antibody can lock these fibrils in their paused state, offering a potential new approach for treatment that targets these critical growth points.

Breakthrough in Alzheimer’s Research.