Sep 16, 2021
Justin Simon Shepherds Perseverance Through First Martian Samples
Posted by Alberto Lao in category: space
The Johnson Space Center scientist was tasked with helping guide the way for mission’s first cored Mars rock sample.
The Johnson Space Center scientist was tasked with helping guide the way for mission’s first cored Mars rock sample.
Analysis of unique fingerprints in light emitted from material surrounding young stars has revealed “significant reservoirs” of large organic molecules necessary to form the basis of life, say researchers.
Dr. John Ilee, Research Fellow at the University of Leeds who led the study, says the findings suggest that the basic chemical conditions that resulted in life on Earth could exist more widely across the Galaxy.
The large organic molecules were identified in protoplanetary disks circling newly formed stars. A similar disk would have once surrounded the young Sun, forming the planets that now make up our Solar System. The presence of the molecules is significant because they are “stepping-stones” between simpler carbon-based molecules such as carbon monoxide, found in abundance in space, and more complex molecules that are required to create and sustain life.
Reinforcement learning is an interesting area of machine learning (ML) that has advanced rapidly in recent years. AlphaGo is one such RL-based computer program that has defeated a professional human Go player, a breakthrough that experts feel was a decade ahead of its time.
Reinforcement learning differs from supervised learning because it does not need the labelled input/output pairings for training or the explicit correction of sub-optimal actions. Instead, it investigates how intelligent agents should behave in a particular situation to maximize the concept of cumulative reward.
This is a huge plus when working with real-world applications that don’t come with a tonne of highly curated observations. Furthermore, when confronted with a new circumstance, RL agents can acquire methods that allow them to behave even in an unclear and changing environment, relying on their best estimates at the proper action.
That fossil wasn’t enough to confirm Africa as our homeland. Since that discovery, paleoanthropologists have amassed many thousands of fossils, and the evidence over and over again has pointed to Africa as our place of origin. Genetic studies reinforce that story. African apes are indeed our closest living relatives, with chimpanzees more closely related to us than to gorillas. In fact, many scientists now include great apes in the hominid family, using the narrower term “hominin” to refer to humans and our extinct cousins.
In a field with a reputation for bitter feuds and rivalries, the notion of humankind’s African origins unifies human evolution researchers. “I think everybody agrees and understands that Africa was very pivotal in the evolution of our species,” says Charles Musiba, a paleoanthropologist at the University of Colorado Denver.
Paleoanthropologists have sketched a rough timeline of how that evolution played out. Sometime between 9 million and 6 million years ago, the first hominins evolved. Walking upright on two legs distinguished our ancestors from other apes; our ancestors also had smaller canine teeth, perhaps a sign of less aggression and a change in social interactions. Between about 3.5 million and 3 million years ago, humankind’s forerunners ventured beyond wooded areas. Africa was growing drier, and grasslands spread across the continent. Hominins were also crafting stone tools by this time. The human genus, Homo, arrived between 2.5 million and 2 million years ago, maybe earlier, with larger brains than their predecessors. By at least 2 million years ago, Homo members started traveling from Africa to Eurasia. By about 300,000 years ago, Homo sapiens, our species, emerged.
How possible?
Wozniak’s Privateer Space hopes to address the growing orbital debris problem.
The study, published in Physical Review Letters, used historic records between 1962–64 from a research station in Scotland. Scientists compared days with high and low radioactively-generated charge, finding that clouds were visibly thicker, and there was 24% more rain on average on the days with more radioactivity.
Professor Giles Harrison, lead author and Professor of Atmospheric Physics at the University of Reading, said: By studying the radioactivity released from Cold War weapons tests, scientists at the time learnt about atmospheric circulation patterns. We have now reused this data to examine the effect on rainfall.
The politically charged atmosphere of the Cold War led to a nuclear arms race and worldwide anxiety. Decades later, that global cloud has yielded a silver lining, in giving us a unique way to study how electric charge affects rain.
“The door is open now. The view is pretty incredible.”
Watch four “amateur astronauts” and a floating stuffed dog go to space.
The four crew members — Shift4 Payments founder Jared Isaacman, scientist Sian Proctor, St. Jude Children’s Research Hospital employee Hayley Arceneaux, and aeronautical engineer Chris Sembroski — are the first all-civilian crew to fly aboard a private vehicle to low-Earth orbit.
Continue reading “Watch: Civilian astronauts depart Earth on Inspiration4 mission” »
Researchers have developed a new method that can automatically produce clear images through murky water. The new technology could be useful for searching for drowning victims, documenting submerged archaeological artifacts and monitoring underwater farms.
Imaging clearly underwater is extremely challenging because the water and the particles in it tend to scatter light. But, because scattered light is partially polarized, imaging using a camera that is sensitive to polarization can be used to suppress scattered light in underwater images.
“Our new method overcomes the limitations of traditional polarimetric underwater imaging, laying the groundwork for taking this method out of the lab and into the field,” said research team leader Haofeng Hu from Tianjin University in China. “Unlike previous methods, there’s no requirement for the image to include a background area to estimate the backscattered light.”
Are they being tugged by Planet Nine?
A six-year search of space beyond the orbit of Neptune has netted 461 newly discovered objects.
These objects include four that are more than 230 astronomical units (AU) from the sun. (An astronomical unit is the distance from the Earth to the sun, about 93 million miles or 149.6 million kilometers). These extraordinarily distant objects might shed light on Planet Nine, a theoretical, never-observed body that might be hiding in deep space, its gravity affecting the orbits of some of the rocky objects at the solar system’s edge.
Dubbed Inspiration4, the mission launched Wednesday from NASA’s Kennedy Space Center in Cape Canaveral, Florida just after 8 p.m.
During their live-streamed ascent, some of the crew gave a “thumbs up” and pumped their fists in the air in celebration of the successful liftoff.
The four private citizens — two men and two women — will spend three days circling the world at an altitude of 335 miles — about 75 miles higher than the International Space Station and on a level with the Hubble Space Telescope.