Toggle light / dark theme

It sounds like a scene from a spy thriller. An attacker gets through the IT defenses of a nuclear power plant and feeds it fake, realistic data, tricking its computer systems and personnel into thinking operations are normal. The attacker then disrupts the function of key plant machinery, causing it to misperform or break down. By the time system operators realize they’ve been duped, it’s too late, with catastrophic results.

The scenario isn’t fictional; it happened in 2,010 when the Stuxnet virus was used to damage nuclear centrifuges in Iran. And as ransomware and other cyberattacks around the world increase, system operators worry more about these sophisticated “false data injection” strikes. In the wrong hands, the computer models and data analytics—based on artificial intelligence—that ensure smooth operation of today’s electric grids, manufacturing facilities, and power plants could be turned against themselves.

Purdue University’s Hany Abdel-Khalik has come up with a powerful response: To make the computer models that run these cyberphysical systems both self-aware and self-healing. Using the background noise within these systems’ data streams, Abdel-Khalik and his students embed invisible, ever-changing, one-time-use signals that turn passive components into active watchers. Even if an is armed with a perfect duplicate of a system’s model, any attempt to introduce falsified data will be immediately detected and rejected by the system itself, requiring no human response.

In a rare non-magnetic kagome material, a topological metal cools into a superconductor through a sequence of novel charge density waves. Researchers have discovered a complex landscape of electronic states that can co-exist on a kagome lattice, resembling those in high-temperature superconductor.


The Computational Cosmology group of the Department of Astronomy and Astrophysics (DAA) of Valencia University (UV) has published an article in The Astrophysical Journal Letters, one of the international journals with the greatest impact in Astrophysics, which shows, with complex theoretical-computational models, that cosmic voids are constantly replenished with external matter.

The Computational Cosmology group of the Department of Astronomy and Astrophysics (DAA) of Valencia University (UV) has published an article in The Astrophysical Journal Letters, one of the international journals with the greatest impact in Astrophysics, which shows, with complex theoretical-computational models, that cosmic voids are constantly replenished with external matter.

“This totally unexpected result can have transcendental implications, not only for our understanding of the large-scale structure of the , but on the settings for the creation and evolution of galaxies,” explains Vicente Quilis, director at the DAA and head researcher for the project.

“Cosmic voids are the largest structures in the cosmos, and knowledge on their creation and evolution is essential to understand the of the universe,” says Susana Planelles, co-director of the research. Studying them as a physical occurrence has always been extremely complex precisely due to being large volumes with very low material content. From an observational point of view, analyzing the few existing items inside them is very hard, and the theoretical modeling of these occurrences is no less complex, which is why highly simplified descriptions of these structures are used.

Turning plastic waste into roads.


Presented by BASF

A company in Nairobi wants to install bricks made from plastic trash across Kenya’s capital. Could they become a solution for a country where 90% of roads have never been paved? And are roads made from plastic really a good idea?

⭕️Watch the full episode👉 https://ept.ms/2YnViDX

⭕️ Watch in-depth videos based on Truth & Tradition at Epoch TV👉 https://ept.ms/3j1W0gX

⭕️Sign up for our NEWSLETTER and stay in touch👉 https://ept.ms/EpochTVNewsletter.
⭕️ Subscribe to our unique new platform👉 https://www.epochtv.com.

The Chinese government is developing biological weapons that can attack #DNA strands specific to targeted racial groups. According to Gordon Chang, author of “The Coming Collapse of China,” these “ethnic-specific pathogens” could amount to “civilization killers,” and leave China as the world’s “only viable #civilization.” This development is happening as China amasses the largest collection of American DNA profiles, even larger than what the United States has, through the purchase of DNA sequencing companies. We sat down with Gordon Chang to learn more about why these developments necessitate the immediate attention of the U.S. #government, and of governments around the world.

AUSTIN, Texas — As much as a third of the world’s population does not have access to clean drinking water, according to some estimates, and half of the population could live in water-stressed areas by 2025. Finding a solution to this problem could save and improve lives for millions of people, and it is a high priority among scientists and engineers around the globe.

Scientists and engineers at The University of Texas at Austin have created a hydrogel tablet that can rapidly purify contaminated water. One tablet can disinfect a liter of river water and make it suitable for drinking in an hour or less.

“Our multifunctional hydrogel can make a big difference in mitigating global water scarcity because it is easy to use, highly efficient and potentially scalable up to mass production,” said Guihua Yu, an associate professor in the Cockrell School of Engineering’s Walker Department of Mechanical Engineering and Texas Materials Institute.