Toggle light / dark theme

👍 If you like WorldCam content, please hit the Like, Subscribe and even leave a comment for more great content. Thank you!
– — – — – — – — – — – — – — – -
Starship’s fifth flight test could launch as soon as October 13, pending regulatory approval.

The launch window will open as early as 7:00 a.m. CT. As is the case with all developmental testing, the schedule is dynamic and likely to change, so be sure to stay tuned to our X account for updates.

Starship will aim to take another step towards full and rapid reusability. The primary objectives will be attempting the first ever return to launch site and catch of the Super Heavy booster and another Starship reentry and landing burn, aiming for an on-target splashdown of Starship in the Indian Ocean.

Credit: SpaceX

Source: University of Pittsburgh.

Higher levels of HDL-C—known as the “good cholesterol”—have been shown to correlate with heightened risk for Alzheimer’s disease.

A new study published in the Journal of Clinical Endocrinology & Metabolism might explain why.

Oak Ridge National Laboratory’s new RODAS technology provides detailed insights into atomic changes in materials, critical for advancing quantum computing.

The method’s ability to analyze materials like molybdenum disulfide without damaging them marks a significant improvement over traditional techniques, offering potential breakthroughs in material science.

A team of researchers led by the Department of Energy’s Oak Ridge National Laboratory has developed a novel method for observing changes in materials at the atomic level. This technique opens new avenues for advancing our understanding and development of materials critical for quantum computing and electronics.

Researchers at the Department of Energy’s Oak Ridge National Laboratory, the University of Tennessee, and Texas A&M University demonstrated bio-inspired devices that accelerate routes to neuromorphic, or brain-like, computing.

Results published in Nature Communications report the first example of a lipid-based “memcapacitor,” a charge storage component with memory that processes information much like synapses do in the brain. Their discovery could support the emergence of computing networks modeled on biology for a sensory approach to machine learning.

“Our goal is to develop materials and computing elements that work like biological synapses and neurons—with vast interconnectivity and flexibility—to enable autonomous systems that operate differently than current computing devices and offer new functionality and learning capabilities,” said Joseph Najem, a recent postdoctoral researcher at ORNL’s Center for Nanophase Materials Sciences, a DOE Office of Science User Facility, and current assistant professor of mechanical engineering at Penn State.

Duke University engineers are layering atom-thick lattices of carbon with polymers to create unique materials with a broad range of applications, including artificial muscles.

The lattice, known as graphene, is made of pure carbon and appears under magnification like chicken wire. Because of its unique optical, electrical, and mechanical properties, graphene is used in electronics, energy storage, composite materials, and biomedicine.

Researchers have developed a novel graphene-germanium hot-emitter transistor using a new hot carrier generation mechanism, achieving unprecedented performance. This advancement opens new possibilities for low-power, high-performance multifunctional devices.

Transistors, the fundamental components of integrated circuits, encounter increasing difficulties as their size continues to shrink. To boost circuit performance, it has become essential to develop transistors that operate on innovative principles. Hot carrier transistors, which harness the extra kinetic energy of charge carriers, offer the potential to enhance transistor speed and functionality. However, their effectiveness has been constrained by conventional methods of generating hot carriers.

A team of researchers led by Prof. Chi Liu, Prof. Dongming Sun, and Prof. Huiming Cheng from the Institute of Metal Research (IMR) of the Chinese Academy of Sciences has proposed a novel hot carrier generation mechanism called “stimulated emission of heated carriers (SEHC).” The team has also developed an innovative hot-emitter transistor (HOET), achieving an ultralow sub-threshold swing of less than 1 mV/dec and a peak-to-valley current ratio exceeding 100. The study provides a prototype of a low-power, multifunctional device for the post-Moore era.

University of Illinois researchers have innovated in molecular electronics by creating stable, shape-persistent molecules with controlled conductance, using a new synthesis method, paving the way for more reliable miniaturized electronic devices.

As electronic devices keep shrinking, physical size limitations are starting to hinder the trend of doubling transistor density on silicon-based microchips every two years, as predicted by Moore’s law. Molecular electronics, which involves using single molecules as the fundamental components of electronic devices, presents a promising avenue for further miniaturizing small-scale electronics.

Devices that utilize molecular electronics require precise control over the flow of electrical current. However, the dynamic nature of these single molecule components affects device performance and impacts reproducibility.

Using a nanoscale structure that consisted of a sequential array of a source electrode, a quantum well, a tunneling barrier, a quantum dot, another tunneling barrier, and a drain electrode, researchers were able to suppress electron excitation and cool electrons to −228 °C (−378 °F) without external means at room temperature.

A team of researchers has discovered a way to cool electrons to −228 °C without external means and at room temperature, an advancement that could enable electronic devices to function with very little energy.

The process involves passing electrons through a quantum well to cool them and keep them from heating.

Brookhaven National Laboratory researchers are working to develop ways to synchronize the magnetic spins in nanoscale devices to build tiny signal-generating or receiving antennas and other electronics.

Upton, New York — Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory are seeking ways to synchronize the magnetic spins in nanoscale devices to build tiny yet more powerful signal-generating or receiving antennas and other electronics. Their latest work, published in Nature Communications, shows that stacked nanoscale magnetic vortices separated by an extremely thin layer of copper can be driven to operate in unison, potentially producing a powerful signal that could be put to work in a new generation of cell phones, computers, and other applications.

The aim of this “spintronic” technology revolution is to harness the power of an electron’s “spin,” the property responsible for magnetism, rather than its negative charge.