Toggle light / dark theme

Neuroscience biweekly vol. 45 27th October — 10th November.


The brain uses a shared mechanism for combining words from a single language and for combining words from two different languages, a team of neuroscientists has discovered. Its findings indicate that language switching is natural for those who are bilingual because the brain has a mechanism that does not detect that the language has switched, allowing for a seamless transition in comprehending more than one language at once.

“Our brains are capable of engaging in multiple languages,” explains Sarah Phillips, a New York University doctoral candidate and the lead author of the paper, which appears in the journal eNeuro. “Languages may differ in what sounds they use and how they organize words to form sentences. However, all languages involve the process of combining words to express complex thoughts.”

“Bilinguals show a fascinating version of this process — their brains readily combine words from different languages together, much like when combining words from the same language,” adds Liina Pylkkänen, a professor in NYU’s Department of Linguistics and Department of Psychology and the senior author of the paper.

For over a decade, Israeli atmospheric water generator (AWG) company Watergen has been one of the players working to refine and grow air-to-water technology that can efficiently pull water vapor out of the air and collect it as fresh, filtered drinking water. Its previous work has focused heavily on large installations to supply communities, businesses and households, and its latest innovations shrink the water-harvesting tech into a form portable enough for overlanders, RVers, tiny home dwellers and other off-grid explorers.

The last time we ran into Watergen’s work was at CES 2,019 where it showed the Automotive AWG system. The center-console-integrated system was one of the wondrous highlights of the show, but it seemed an odd, limited use for a technology with such potential, a strange detour on a larger journey. Does the average passenger car driver really need a water tap over the cupholders?

If a mobile air-to-water generator is to find a following amongst drivers, it would be a far better fit for vehicles that spend long hours traveling through places without much access to water – motorhomes and camping trailers, specialized remote-work trucks and vans, and perhaps long-haul tractor-trailers, to name a few examples.

Micro-electro-mechanical devices (MEMS) are based on the integration of mechanical and electrical components on a micrometer scale. We all use them continuously in our everyday life: For example, in our mobile phones there are at least a dozen MEMS that regulate different activities ranging from motion, position, and inclination monitoring of the phone; active filters for the different transmission bands, and the microphone itself.

Even more interesting is the extreme nanoscale miniaturization of these devices (NEMS), because it offers the possibility of creating inertial, mass and with such sensitivity that they can interact with single .

However, the diffusion of NEMS sensors is still limited by the high manufacturing cost of traditional silicon-based technologies. Conversely, new technologies such as 3D printing have shown that similar structures can be created at low cost and with interesting intrinsic functionalities, but to date the performance as mass sensors are poor.

Let’s take a look at a highly abstracted neuron. It’s like a tootsie roll, with a bulbous middle section flanked by two outward-reaching wrappers. One side is the input—an intricate tree that receives signals from a previous neuron. The other is the output, blasting signals to other neurons using bubble-like ships filled with chemicals, which in turn triggers an electrical response on the receiving end.

Here’s the crux: for this entire sequence to occur, the neuron has to “spike.” If, and only if, the neuron receives a high enough level of input—a nicely built-in noise reduction mechanism—the bulbous part will generate a spike that travels down the output channels to alert the next neuron.

But neurons don’t just use one spike to convey information. Rather, they spike in a time sequence. Think of it like Morse Code: the timing of when an electrical burst occurs carries a wealth of data. It’s the basis for neurons wiring up into circuits and hierarchies, allowing highly energy-efficient processing.

When sound was first incorporated into movies in the 1920s, it opened up new possibilities for filmmakers such as music and spoken dialogue. Physicists may be on the verge of a similar revolution, thanks to a new device developed at Stanford University that promises to bring an audio dimension to previously silent quantum science experiments.

In particular, it could bring sound to a common quantum science setup known as an , which uses a crisscrossing mesh of laser beams to arrange atoms in an orderly manner resembling a crystal. This tool is commonly used to study the fundamental characteristics of solids and other phases of matter that have repeating geometries. A shortcoming of these lattices, however, is that they are silent.

“Without sound or vibration, we miss a crucial degree of freedom that exists in real materials,” said Benjamin Lev, associate professor of applied physics and of physics, who set his sights on this issue when he first came to Stanford in 2011. “It’s like making soup and forgetting the salt; it really takes the flavor out of the quantum ‘soup.’”.

OrCam’s reading device, ElectReon’s ‘smart road’ tech, a sensor for farming and security drones all make the list.


1. OrCam Read, a smart reading support device developed by OrCam Technologies, the maker of artificial intelligence-based wearable devices to help the blind and visually impaired read texts via audio feedback. The company launched OrCam Read in 2,020 a handheld digital reader meant to help people with language processing challenges, including dyslexia. The device (priced at $1,990) captures and reads out full pages of text and digital screens, and follows voice commands.

Circa 2020


The 7,700 square foot store offers baked goods sourced locally, fresh seasonal produce, meat, seafood and ready-made meals, as well as beer, wine and spirits.

There are no cashiers. To make purchases, shoppers need an Amazon account and the free Amazon Go app from the Apple App Store, Google Play or Amazon Appstore, which they can download onto a recent-generation iPhone or Android phone. They swipe a QR code from the app to enter the store.

US-based Wright Electric has announced a 100-seat electric short-hop aircraft slated to go into service by 2026. It’ll either be powered by hydrogen, or it’ll use recyclable metal in what the company calls an “aluminum fuel cell.”

Wright is working on a number of large electric aircraft projects, including an even bigger 186-seater it’s developing in conjunction with European airline EasyJet and BAE Systems. This would be a “low-emissions” electric, presumably using a fossil-fueled range extender to top up its batteries and extend its flight range to around 1,290 km (800 miles). The partnership is pitching it as a “path” towards clean aviation, a kind of Prius of the skies, that will prove the electric powertrain while waiting for energy storage to come up to scratch.

Wright’s latest project, however, will be totally zero-emissions, and will use high-density energy storage to tackle flights up to an hour in duration – that’s enough for the ~1,000-km (620-mile) hop between Sydney and Melbourne, or London-Geneva, or Tokyo-Osaka, or LA-San Francisco.

In response to the so-called “labor shortage,” companies are looking to finally replace replace workers with machines — and robotics companies couldn’t be happier to oblige.

David Zapico, the CEO of robotics company Ametek Inc., told Bloomberg News that his company is “firing on all cylinders” because, as he put it, “people want to remove labor.”

He’s not alone in his musings. Executives at Hormel Foods Corp and Domino’s Pizza also confirmed to Bloomberg that they’re investing in automation in an effort to reduce labor costs and respond to a “tight labor supply,” as one Hormel vice president put it.