Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

How Dopamine Plays a Key Role in Consciousness

Summary: Study reveals how dopamine may have a central role in maintaining our consciousness.

Source: The Conversation.

Consciousness is arguably the most important scientific topic there is. Without consciousness, there would after all be no science. But while we all know what it is like to be conscious – meaning that we have personal awareness and respond to the world around us – it has turned out to be near impossible to explain exactly how it arises from the hardware of the brain. This is dubbed the “hard” problem of consciousness.

Miniature, Implantable Nerve Coolers for Targeted Pain Relief

Summary: Researchers have developed a new implantable device that can “cool” nerves and provide on-demand pain relief for those suffering from neuropathic or chronic pain.

Source: AAAS

An implantable device designed to “cool” nerves can provide targeted, on-demand pain relief, researchers report. When tested on rats with neuropathic pain, the device produced highly localized cooling.

Awareness Without a Sense of Self

Summary: People who practice meditation often report feeling “pure awareness” in which they say they experience consciousness itself. The state encompasses specific sensations and non-specific feelings, thoughts, and perceptions. Researchers say their findings will help explain “pure consciousness,” and work to generate a prototypical minimal model for human conscious perception.

Source: Johannes Gutenberg University Mainz.

In the context of meditation practice, meditators can experience a state of “pure awareness” or “pure consciousness”, in which they perceive consciousness itself. This state can be experienced in various ways, but evidently incorporates specific sensations as well as non-specific accompanying perceptions, feelings, and thoughts.

Self-calibrating programmable photonic integrated circuits

Don SpantonUmmm so what?

Worms experience pain. Pigs, chickens also experience pain. … See more.

Nicholi AveryAuthor.

Don Spanton good question.

However pain is not a trivial matter when it comes to abortion. Astudy by the University of Otago Centre for Science Communication, found that A person’s stance on abortion is linked to their, often inaccurate, belief ab… See more.


4 Replies.

Antibiotic Treatments May Make Us More Susceptible to Negative Emotions

Summary: Recent antibiotic use impacts the way in which people pay attention to negative facial expressions. Findings shed light on how antibiotic use can increase the risks of depression.

Source: Lieden University.

People who have taken antibiotics in the past three months pay more attention to negative facial expressions, according to research by postdoc Katerina Johnson and assistant professor Laura Steenbergen. This may explain how antibiotics increase the risk of developing depression.

Unusual superconductivity observed in twisted trilayer graphene

The ability to turn superconductivity off and on with a literal flip of a switch in so-called “magic-angle twisted graphene” has allowed engineers at Caltech to observe an unusual phenomenon that may shed new light on superconductivity in general.

The research, led by Stevan Nadj-Perge, assistant professor of applied physics and , was published in the journal Nature on June 15.

Magic-angle twisted graphene, first discovered in 2018, is made from two or three sheets of graphene (a form of carbon consisting of a single layer of atoms in a honeycomb-like lattice pattern) layered atop one another, with each sheet twisted at precisely 1.05 degrees in relation to the one below it. The resulting bilayer or trilayer has unusual electronic properties: for example, it can be made into an insulator or a superconductor depending on how many are added.

Physicists discover a ‘family’ of robust, superconducting graphene structures

Martin ChartrandListen to the sound, more like a musket than a 3D printed plastic gun.


When it comes to graphene, it appears that superconductivity runs in the family.

Graphene is a single-atom-thin material that can be exfoliated from the same graphite that is found in pencil lead. The ultrathin material is made entirely from carbon atoms that are arranged in a simple hexagonal pattern, similar to that of chicken wire. Since its isolation in 2004, has been found to embody numerous remarkable properties in its single-layer form.

In 2018, MIT researchers found that if two graphene layers are stacked at a very specific “magic” angle, the twisted bilayer structure could exhibit robust superconductivity, a widely sought material state in which an can flow through with zero energy loss. Recently, the same group found a similar superconductive state exists in twisted trilayer graphene—a structure made from three graphene layers stacked at a precise, new magic angle.

Using thermodynamic geometry to optimize microscopic finite-time heat engines

Stochastic thermodynamics is an emerging area of physics aimed at better understanding and interpreting thermodynamic concepts away from equilibrium. Over the past few years, findings in these fields have revolutionized the general understanding of different thermodynamic processes operating in finite time.

Adam Frim and Mike DeWeese, two researchers at the University of California, Berkeley (UC Berkeley), have recently carried out a theoretical study exploring the full space of thermodynamic cycles with a continuously changing bath temperature. Their results, presented in a paper published in Physical Review Letters, were obtained using geometric methods. Thermodynamic geometry is an approach to understanding the response of thermodynamic systems by means of studying the geometric space of control.

“For instance, for a gas in a piston, one coordinate in this space of control could correspond to the experimentally controlled volume of the gas and another to the temperature,” DeWeese told Phys.org. “If an experimentalist were to turn those knobs, that plots out some trajectory in this thermodynamic space. What thermodynamic geometry does is assign to each curve a ‘thermodynamic length’ corresponding to the minimum possible dissipated energy of a given path.”