Menu

Blog

Page 603

Jun 24, 2024

Untangling the entangled: Quantum study shines fresh light on how neutrinos fuel supernovae

Posted by in categories: cosmology, particle physics, quantum physics, supercomputing

“At this point, the neutrinos go from passive particles—almost bystanders—to major elements that help drive the collapse,” Savage said. “Supernovae are interesting for a variety of reasons, including as sites that produce heavy elements such as gold and iron. If we can better understand neutrinos and their role in the star’s collapse, then we can better determine and predict the rate of events such as a supernova.”

Scientists seldom observe a supernova close-up, but researchers have used classical supercomputers such as ORNL’s Summit to model aspects of the process. Those tools alone wouldn’t be enough to capture the quantum nature of neutrinos.

“These neutrinos are entangled, which means they’re interacting not just with their surroundings and not just with other neutrinos but with themselves,” Savage said.

Jun 24, 2024

Exploring SpaceX’s Starship Factory with Elon Musk

Posted by in categories: Elon Musk, space travel

SpaceX’s Starship is a revolutionary rocket that aims to achieve full reusability and enable multi-planetary life, with the potential to launch a new ship every couple of hours, dramatically revolutionizing space travel Questions to inspire discussion What is SpaceX’s Starship? —SpaceX’s Starship is a revolutionary roc.

Jun 24, 2024

Overview of the Immune System

Posted by in category: biotech/medical

Successful immune defense requires activation, regulation, and resolution of the immune response. Save this comprehensive reference on the cellular components of the immune system.

Jun 24, 2024

Astronomers find most Distant Galaxy using James Webb Space Telescope

Posted by in category: cosmology

An international team of astronomers today announced the discovery of the two earliest and most distant galaxies ever seen, dating back to only 300 million years after the Big Bang. These results, using NASA’s James Webb Space Telescope (JWST), mark a major milestone in the study of the early universe.

The discoveries were made by the JWST Advanced Deep Extragalactic Survey (JADES) team. Daniel Eisenstein from the Center for Astrophysics | Harvard & Smithsonian (CfA) is one of the team leaders of JADES and Principal Investigator of the observing program that revealed these galaxies. Ben Johnson and Phillip Cargile, both Research Scientists at CfA, and Zihao Wu, a Harvard Ph.D. student at CfA, also played important roles.

Because of the expansion of the universe, the light from distant galaxies stretches to longer wavelengths as it travels. This effect is so extreme for these two galaxies that their ultraviolet light is shifted to infrared wavelengths where only JWST can see it. Because light takes time to travel, more distant galaxies are also seen as they were earlier in time.

Jun 24, 2024

Elon Musk says he wants Optimus to be a ‘good looking robot’ that people think of as a friend

Posted by in categories: Elon Musk, robotics/AI

Elon Musk says he wants Tesla’s humanoid robot to be considered a friend. Musk also joked that the company wanted to make the robot “good-looking.”


Speaking at the Cannes Lions International Festival of Creativity, Elon Musk discussed Tesla’s ambitions for its humanoid robot.

Jun 24, 2024

The Prison of the Future — Cognify

Posted by in categories: biotech/medical, law enforcement, neuroscience

A little scifi sold again as near future situation.


Introducing Cognify, the prison of the future. This facility is designed to treat criminals like patients. Instead of spending years in an actual prison cell, prisoners could finish their sentence here in just a few minutes. Cognify could someday create and implant artificial memories directly into the prisoner’s brain. It could offer a new approach to criminal rehabilitation, transforming how society deals with offenders by focusing on rehabilitation rather than punishment. #Science #Technology #Research #NeuroScience #psychology.

Continue reading “The Prison of the Future — Cognify” »

Jun 24, 2024

Chilling Discovery: Ancient Protein Discovery Could Redefine How We Treat Pain

Posted by in categories: bioengineering, biotech/medical, chemistry

Menthol detection predates the sensation of cold, indicating separate activation mechanisms that can be distinguished. This differentiation opens possibilities for novel pain treatments that avoid unwanted thermal side effects.

Millions of people around the globe suffer from chronic pain, and many existing treatments depend on opioids, which have significant addiction and overdose risks. Developing non-addictive pain relief options could transform how pain is managed. Recent research focusing on a human protein that controls cold sensations are paving the way for new pain medications. These innovative drugs aim to manage pain without altering body temperature or posing addiction risks.

A new study published in Science Advances on June 21, led by Wade Van Horn, professor in Arizona State University’s School of Molecular Sciences and Biodesign Center for Personalized Diagnostics, has uncovered new insights into the main human cold and menthol sensor TRPM8 (transient receptor potential melastatin 8). Using techniques from many fields like biochemistry and biophysics, their study revealed that it was a chemical sensor before it became a cold temperature sensor.

Jun 24, 2024

Silicon Magic: Powering the Quantum Internet of the Future

Posted by in categories: internet, quantum physics

Building the quantum internet could be significantly simplified by leveraging existing telecommunications technologies and infrastructure. In recent years, researchers have identified defects in silicon—a widely used semiconductor material—that hold the potential for transmitting and storing quantum information across the prevalent telecommunications wavelengths. These silicon defects might just be the prime contenders to host qubits for efficient quantum communications.

Exploring Quantum Defects in Silicon

“It’s still a Wild West out there,” said Evelyn Hu, the Tarr-Coyne Professor of Applied Physics and of Electrical Engineering at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS). “Even though new candidate defects are a promising quantum memory platform, there is often almost nothing known about why certain recipes are used to create them, and how you can rapidly characterize them and their interactions, even in ensembles. And ultimately, how can we fine-tune their behavior so they exhibit identical characteristics? If we are ever to make a technology out of this wide world of possibilities, we must have ways to characterize them better, faster, and more efficiently.”

Jun 24, 2024

Terahertz Waves Supercharged: A Breakthrough With Magnetic Materials

Posted by in categories: innovation, materials

Positioned between microwaves and infrared light, terahertz waves are key to pioneering advancements in imaging and diagnostic technologies. A recent discovery at Tohoku University of a material that can emit these waves more intensely promises to catalyze significant breakthroughs across a spectrum of industries.

Terahertz waves are being intensely studied by researchers around the world seeking to understand the “terahertz gap.” Terahertz waves have a specific frequency that put them somewhere between microwaves and infrared light. This range is referred to as a “gap” because much remains unknown about these waves. In fact, it was only relatively recently that researchers were able to develop the technology to generate them. Researchers at Tohoku University have brought us closer to understanding these waves and filling in this gap of knowledge.

Breakthrough in Terahertz Wave Generation.

Jun 24, 2024

DIANA Debunked by MIT: The MRI That Couldn’t Read Minds

Posted by in categories: biotech/medical, neuroscience

A recent study at MIT has debunked the effectiveness of a new MRI method called DIANA, which was initially thought to directly detect neural activity.

Instead, the signals detected were found to be artifacts produced by the imaging process itself, highlighting the complexities and challenges in developing accurate neuroimaging techniques.

According to scientists at MIT’s McGovern Institute for Brain Research, a new way of imaging the brain with magnetic resonance imaging (MRI) does not directly detect neural activity as originally reported.

Page 603 of 11,947First600601602603604605606607Last