Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

How key brain cells help replay and store memories during rest and sleep

How does the brain store knowledge so that you actually remember what you have learned the next day or even later? To find out, researchers at the University of Oslo disconnected one type of nerve cell in the brain of mice while the animals rested after having learned something new. This gave new answers to what actually happens when you remember earlier experiences for later use. The study is published in the journal Science Advances.

In the first phase of this experiment, were trained to recognize that an image with a particular pattern meant that they would be given a reward in the form of a sweet drink. Two different groups of mice were then put in front of a computer screen where they were able to see several images containing different patterns. In order to demonstrate that they remembered which image led to a reward, the mice had to lick a small “nozzle” that dispensed the drink.

While the mice performed this action, researchers at the University of Oslo monitored the activity in their using a special microscope. “It took some time before the mice understood which pattern triggered a reward. We could see what was happening with their neurons while they mastered the task,” says researcher Kristian K. Lensjø, who works at the Institute of Basic Medical Sciences and the Department of Biosciences at the University of Oslo.

Newborns have elevated levels of a biomarker for Alzheimer’s

Newborn babies and patients with Alzheimer’s disease share an unexpected biological trait: elevated levels of a well-known biomarker for Alzheimer’s, as shown in a study led by researchers at the University of Gothenburg and published in Brain Communications.

First author Fernando Gonzalez-Ortiz and senior author Professor Kaj Blennow recently reported that both newborns and Alzheimer’s patients have elevated blood levels of a protein called phosphorylated tau, specifically a form called p-tau217.

This protein has largely been used as a diagnostic test for Alzheimer’s disease, where an increase in p-tau217 blood levels is proposed to be driven by another process, namely the aggregation of b-amyloid protein into amyloid plaques. Newborns (for natural reasons) do not have this type of pathological change, so interestingly, in newborns increased plasma p-tau217 seems to reflect a completely different—and entirely healthy—mechanism.

Parkinson’s drug reduces symptoms in treatment-resistant depression, clinical trial finds

A drug used for Parkinson’s disease has been shown to be effective in reducing the symptoms of difficult to treat depression, according to a study led by the University of Oxford.

In the largest clinical trial to date, pramipexole was found to be substantially more effective than a placebo at reducing the symptoms of (TRD) over the course of nearly a year, when added to ongoing antidepressant medication.

The trial, published in The Lancet Psychiatry, included 150 patients with treatment-resistant depression, with equal numbers receiving 48 weeks of pramipexole or a placebo, alongside ongoing antidepressant medication.

Highly Scalable, Wearable Surface‐Enhanced Raman Spectroscopy

The last two decades have witnessed a dramatic growth of wearable sensor technology, mainly represented by flexible, stretchable, on-skin electronic sensors that provide rich information of the wearer’s health conditions and surroundings. A recent breakthrough in the field is the development of wearable chemical sensors based on surface-enhanced Raman spectroscopy (SERS) that can detect molecular fingerprints universally, sensitively, and noninvasively. However, while their sensing properties are excellent, these sensors are not scalable for widespread use beyond small-scale human health monitoring due to their cumbersome fabrication process and limited multifunctional sensing capabilities. Here, a highly scalable, wearable SERS sensor is demonstrated based on an easy-to-fabricate, low-cost, ultrathin, flexible, stretchable, adhesive, and biointegratable gold nanomesh. It can be fabricated in any shape and worn on virtually any surface for label-free, large-scale, in situ sensing of diverse analytes from low to high concentrations (10–106 × 10−9 m). To show the practical utility of the wearable SERS sensor, the sensor is tested for the detection of sweat biomarkers, drugs of abuse, and microplastics. This wearable SERS sensor represents a significant step toward the generalizability and practicality of wearable sensing technology.