Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Lab-grown ‘tiny hearts’ bring hope for children and adults with genetic heart disease

Scientists from QIMR Berghofer’s Cardiac Bioengineering Lab have developed lab-grown, three-dimensional heart tissues known as cardiac organoids that mimic the structure and function of real adult human heart muscle.

To create these tissues, the researchers use special cells called (which can turn into any cell in the body). However, when these stem cells become , they usually stay immature and more like the heart tissue found in a developing baby. This immaturity can limit their usefulness to model diseases that present in childhood or as an adult.

In the study, researchers activated two key biological pathways to mimic the effects of exercise in order to mature these cells, making them behave more like genuine adult heart tissue. This breakthrough means scientists can now use these lab-grown heart tissues to test that could help people with heart conditions. The findings have been published in Nature Cardiovascular Research.

New AI system uncovers hidden cell subtypes, boosts precision medicine

In this view of cHL (classic Hodgkin Lymphoma) tissue, CellLENS identified subtle but distinct CD4 T cell subpopulations infiltrating a tumor, lingering at tumor boundaries, and found at a distance from tumors. CellLENS enables the potential precision therapy strategies against specific immune cell populations in the tissue environment.

Image courtesy of the researchers.

ALMA reveals hidden structures in the first galaxies of the universe

Astronomers have used the Atacama Large Millimeter/submillimeter Array (ALMA) to peer into the early universe and uncover the building blocks of galaxies during their formative years. The CRISTAL survey—short for [CII] Resolved ISM in STar-forming galaxies with ALMA—reveals cold gas, dust, and clumpy star formation in galaxies observed as they appeared just 1 billion years after the Big Bang.

“Thanks to ALMA’s unique sensitivity and resolution, we can resolve the internal structure of these early in ways never possible before,” said Rodrigo Herrera-Camus, principal investigator of the CRISTAL survey, professor at Universidad de Concepción, and Director of the Millennium Nucleus for Galaxy Formation (MINGAL) in Chile. “CRISTAL is showing us how the first galactic disks formed, how stars emerged in giant clumps, and how gas shaped the galaxies we see today.”

CRISTAL, an ALMA Large Program, observed 39 typical star-forming galaxies selected to represent the main population of galaxies in the early universe. Using [CII] line emission, a specific type of light emitted by ionized in cold interstellar gas, as a tracer of and dust, and combining it with near-infrared images from the James Webb and Hubble Space Telescopes, researchers created a detailed map of the interstellar medium in each system.

Ultrafast 12-minute MRI maps brain chemistry to spot disease before symptoms

Illinois engineers fused ultrafast imaging with smart algorithms to peek at living brain chemistry, turning routine MRIs into metabolic microscopes. The system distinguishes healthy regions, grades tumors, and forecasts MS flare-ups long before structural MRI can. Precision-medicine neurology just moved closer to reality.

Quantum Dots For Reliable Quantum Key Distribution

Making the exchange of a message invulnerable to eavesdropping doesn’t strictly require quantum resources. All you need to do is to encrypt the message using a one-use-only random key that is at least as long as the message itself. What quantum physics offers is a way to protect the sharing of such a key by revealing whether anyone other than sender and recipient has accessed it.

Imagine that a sender (Alice) wants to send a message to a recipient (Bob) in the presence of an eavesdropper (Eve). First, Alice creates a string of random bits. According to one of the most popular quantum communication protocols, known as BB84, Alice then encodes each bit in the polarization state of an individual photon. This encoding can be performed in either of two orientations, or “bases,” which are also chosen at random. Alice sends these photons one at a time to Bob, who measures their polarization states. If Bob chooses to measure a given photon in the basis in which Alice encoded its bit, Bob’s readout of the bit will match that of Alice’s. If he chooses the alternative basis, Bob will measure a random polarization state. Crucially, until Alice and Bob compare their sequence of measurement bases (but not their results) over a public channel, Bob doesn’t know which measurements reflect the bits encoded by Alice. Only after they have made this comparison—and excluded the measurements made in nonmatching bases—can Alice and Bob rule out that eavesdropping took place and agree on the sequence of bits that constitutes their key.

The efficiency and security of this process depend on Alice’s ability to generate single photons on demand. If that photon-generation method is not reliable—for example, if it sometimes fails to generate a photon when one is scheduled—the key will take longer to share. If, on the other hand, the method sometimes generates multiple photons simultaneously, Alice and Bob run the risk of having their privacy compromised, since Eve will occasionally be able to intercept one of those extra photons, which might reveal part of the key. Techniques for detecting such eavesdropping are available, but they involve the sending of additional photons in “decoy states” with randomly chosen intensities. Adding these decoy states, however, increases the complexity of the key-sharing process.