Menu

Blog

Page 5

Mar 2, 2024

MOSAIC: A Modular System for Assistive and Interactive Cooking

Posted by in category: futurism

MOSAIC

A modular system for assistive and interactive cooking.


Join the discussion on this paper page.

Mar 2, 2024

James Webb Detected Intensely Red Supermassive Black Hole in Early Universe

Posted by in category: cosmology

NASA’s James Webb Space Telescope (JWST) has detected a unique and “intensely red” supermassive black hole hidden in one of the oldest part of the universe.

Scientists proposed the reddish black hole was the outcome of an enlarged universe just 700 million years following the Big Bang, as given in a paper published this month in the journal Nature. Its colors are because of a solid layer of dust compressing a lot of its light, they said.

Whereas for the first time the cosmic monster was technically invented last year, astronomers have now spotted that it is much more massive than anything else of its type in the field, making it strange discovery that could rescript the way we think how supermassive black holes increase relative to their host galaxies.

Mar 2, 2024

Stealthy stem cells to treat disease

Posted by in categories: biotech/medical, genetics, health

Strategies differ, but there are some gene edits that all researchers agree must underpin any universal stem-cell-derived therapy. There is also widespread consensus that the optimal product should incorporate as few edits as possible, both to minimize the potential for unintended genetic consequences and to streamline manufacturing and regulatory approval.

Beyond that, the scientific community is divided. The complexities of the immune system have fuelled spirited debates over the exact genetic manipulations necessary to create a cell therapy that is both capable of bypassing immune defences and delivering meaningful health benefits.

“The immune system is pervasive and persistent,” says Charles Murry, a cardiovascular pathologist at the University of Washington in Seattle and chief executive of StemCardia in Seattle, one of a growing number of biotechnology companies developing gene-editing strategies to overcome immune barriers in regenerative cell treatments.

Mar 2, 2024

AI-enabled atomic robotic probe to advance quantum material manufacturing

Posted by in categories: chemistry, quantum physics, robotics/AI

Scientists from the National University of Singapore (NUS) have pioneered a new methodology of fabricating carbon-based quantum materials at the atomic scale by integrating scanning probe microscopy techniques and deep neural networks. This breakthrough highlights the potential of implementing artificial intelligence (AI) at the sub-angstrom scale for enhanced control over atomic manufacturing, benefiting both fundamental research and future applications.

Open-shell magnetic nanographenes represent a technologically appealing class of new carbon-based quantum materials, which host robust π-spin centres and non-trivial collective quantum magnetism. These properties are crucial for developing high-speed electronic devices at the molecular level and creating quantum bits, the building blocks of quantum computers. Despite significant advancements in the synthesis of these materials through on-surface synthesis, a type of solid-phase chemical reaction, achieving precise fabrication and tailoring of the properties of these quantum materials at the atomic level has remained a challenge.

The figure illustrates the chemist-intuited atomic robotic probe that would allow chemists to precisely fabricate organic quantum materials at the single-molecule level. The robotic probe can conduct real-time autonomous single-molecule reactions with chemical bond selectivity, demonstrating the fabrication of quantum materials with a high level of control. (© Nature Synthesis)

Mar 2, 2024

Brain repairs with nanorobots

Posted by in categories: biotech/medical, robotics/AI

Researchers have found that nerve cells, carried by magnetically powered nanorobots, can be guided towards specific sites in brain tissue to then establish structural and functional connections with the nerve cells of that tissue. While not yet realised in living organisms, the researchers believe their nanorobotic system could potentially be used in patients to treat nerve-related degenerative diseases and injuries.

They describe their findings in the journal Advanced Materials (“A Neurospheroid-Based Microrobot for Targeted Neural Connections in a Hippocampal Slice”).

In the study, a magnetic neurospheroid (Mag-Neurobot), which is made up of magnetic nanorobots carrying live nerve cells (neurons), was introduced into a slice of brain tissue and then magnetically guided to a precise location within that tissue using an external magnetic field.

Mar 2, 2024

Movies of ultrafast electronic circuitry in space and time

Posted by in categories: computing, innovation

The increasing demand for ever-faster information processing has ushered in a new era of research focused on high-speed electronics operating at frequencies nearing terahertz and petahertz regimes. While existing electronic devices predominantly function in the gigahertz range, the forefront of electronics is pushing towards millimeter waves, and the first prototypes of high-speed transistors, hybrid photonic platforms, and terahertz metadevices are starting to bridge the electronic and optical domains.

However, characterizing and diagnosing such devices pose a significant challenge due to the limitations of available diagnostic tools, particularly in terms of speed and spatial resolution. How shall one measure a breakthrough device if it’s the fastest and smallest of its kind?

In response to this challenge, a team of researchers from the University of Konstanz now proposes an innovative solution: They create femtosecond electron pulses in a transmission electron microscope, compress them with infrared laser light to merely 80 femtosecond duration, and synchronize them to the inner fields of a laser-triggered electronic transmission line with the help of a photoconductive switch. Then, using a pump-probe approach, the researchers directly sense the local electromagnetic fields in their electronic devices as a function of space and time.

Mar 2, 2024

Faster charging with diamond nanomembranes

Posted by in categories: sustainability, transportation

Diamond is known for its outstanding thermal conductivity. This makes the material ideal for cooling electronic components with high power densities, such as those used in processors, semiconductor lasers or electric vehicles. Researchers at Fraunhofer USA, an independent international affiliate of the Fraunhofer-Gesellschaft, have succeeded in developing wafer-thin nanomembranes from synthetic diamonds that can be integrated into electronic components, thereby reducing the local heat load by up to ten times. This helps to improve the road performance and service life of electric cars and significantly reduces battery charging time.

An increase in power density and the resulting higher heat dissipation in electronic components require new materials. Diamond is known for its high thermal conductivity, which is four to five times higher than that of copper. For this reason, it is a particularly interesting material when it comes to cooling power electronics in electric transportation, photovoltaics or storage systems.

Until now, heat sinks made of copper or aluminum plates have increased the heat-emitting surface of components that produce heat, thus preventing damage due to overheating.

Mar 2, 2024

Study shows that similarly charged particles can sometimes attract, rather than repel

Posted by in categories: nanotechnology, particle physics

‘Opposites charges attract; like charges repel’ is a fundamental principle of basic physics. But a new study from Oxford University, published in Nature Nanotechnology (“A charge-dependent long-ranged force drives tailored assembly of matter in solution”), has demonstrated that similarly charged particles in solution can, in fact, attract each other over long distances. Just as surprisingly, the team found that the effect is different for positively and negatively charged particles, depending on the solvent.

The study found that negatively charged silica microparticles suspended in water attracted each other to form hexagonally arranged clusters. (Image: Zhang Kang)

Besides overturning long-held beliefs, these results have immediate implications for a range of processes that involve interparticle and intermolecular interactions across various length-scales, including self-assembly, crystallisation, and phase separation.

Mar 2, 2024

Butterfly mating behaviors inspire next level brain-like computing

Posted by in categories: chemistry, robotics/AI

Cutting-edge research harnesses butterfly mating behaviors to create a groundbreaking visuochemical integration platform. This bio-inspired hardware, merging visual and chemical data, paves the way for advanced multisensory decision-making in artificial intelligence.

Mar 2, 2024

Ableism Puts Neurodivergent Students at a Disadvantage

Posted by in categories: biotech/medical, neuroscience

Physics has a diversity problem: those with identities outside of the majority “able-bodied, white, cis, and male” face significant barriers to entry. While efforts in the US to level the playing field are beginning to show success, studies continue to find that minority physicists will likely experience some form of bigotry, bias, or barrier during their career that will hamper their chances of success. These inequities and biases range from skewed course structures that favor specific learning styles (see Research News: Restructuring Classes Can Level the Playing Field) to systemic prejudices that hinder some groups from gaining grants (see News Feature: Systemic Racism Reflected in Grant Allocations, Researchers Argue) to unconscious biases that lead to the significant undercitation of minority physicists compared to their white, male counterparts (see News Feature: The Uneven Spread of Citations). All these factors can have serious career consequences, with negative experiences being a key factor driving people to leave the field.

One lesser-studied aspect of identity and how it impacts a person’s experience in physics is neurodivergence—a nonmedical umbrella term used to describe people whose brains process information in way that is different to what is considered normal. Now Geraldine Cochran of Ohio State University and Liam McDermott and Nazeer Mosley, both of Rutgers University, New Jersey, have developed a framework for interpreting the experiences of this group of people [1]. An initial analysis of interviews with three neurodivergent physicists shows that, while this group reports little outright discrimination or violence, structural ableism negatively impacted their time as students. “There are more neurodivergent people entering college than ever before,” McDermott says. “But their needs regularly get overlooked.”

A person who identifies as neurodivergent may have a neurological disorder, such as autism or Tourette’s syndrome; they may have a learning disability, such as dyslexia (which affects language processing) or dyscalculia (which affects number processing); or they could have a mental illness, such as depression or anxiety. For their study, Cochran, McDermott, and Mosley interviewed three physicists who identified as being neurodivergent and who pursued nonacademic careers after completing their undergraduate degrees. All three identified as having attention-deficit hyperactivity disorder (ADHD) and anxiety. Sky (the interviewees were all given pseudonyms) also has depression, Catalina has depression and dyslexia, and Henry has epilepsy. The interviews covered the trio’s undergraduate experiences. Cochran, McDermott, and Mosley then analyzed the trio’s answers using their newly developed “Critical Disability Physics Identity” framework.

Page 5 of 10,719First23456789Last