Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Electrons that lag behind nuclei in 2D materials could pave way for novel electronics

One of the great successes of 20th-century physics was the quantum mechanical description of solids. This allowed scientists to understand for the first time how and why certain materials conduct electric current and how these properties could be purposefully modified. For instance, semiconductors such as silicon could be used to produce transistors, which revolutionized electronics and made modern computers possible.

To be able to mathematically capture the complex interplay between electrons and atomic nuclei and their motions in a solid, physicists had to make some simplifications. They assumed, for example, that the light electrons in an atom follow the motion of the much heavier atomic nuclei in a crystal lattice without any delay. For several decades, this Born-Oppenheimer approximation worked well.

Researchers build plasma accelerator that boosts electron energy and brightness at the same time

Researchers from the Department of Energy’s SLAC National Accelerator Laboratory and the University of California, Los Angeles (UCLA), have designed innovative technology that can generate both high-energy and high-brightness electron bunches in an accelerator that is a fraction of the size of current particle accelerators.

This breakthrough has the potential to shrink the size of future particle colliders and X-ray free-electron lasers that researchers use to gain insight into nature’s fundamental building blocks and processes.

In the new study, the UCLA-led team developed a novel plasma wakefield accelerator (PWFA), in which electrons gain energy by “surfing” a plasma wave rather than drawing energy from the electromagnetic field inside metal structures of conventional accelerators.

‘Pocket-type’ high-temperature superconducting coil achieves 44.86 tesla combined magnetic field

A research team led by Kuang Guangli and Jiang Donghui at the High Magnetic Field Laboratory of the Hefei Institutes of Physical Science of the Chinese Academy of Sciences (CHMFL), has developed a “pocket-type” high-temperature superconducting (HTS) coil, achieving a record combined magnetic field of 44.86 tesla.

The coil, wound using domestically produced REBa₂Cu₃O₇₋ₓ (REBCO) tapes, generated 28.20 T at zero field in a liquid helium bath and produced an additional 10.36 T inside the 34.5 T steady-state magnetic field of the WM5 water-cooled magnet.

Steady high magnetic fields are critical for frontier research in materials science, physics, and biology, enabling scientists to observe new phenomena and explore new laws of matter. REBCO high-temperature superconducting material has become one of the optimal choices for developing devices that generate higher magnetic fields, owing to its high current-carrying capacity and favorable mechanical properties.

Error-correction technology to turn quantum computing into real-world power

Ripples spreading across a calm lake after raindrops fall—and the way ripples from different drops overlap and travel outward—is one image that helps us picture how a quantum computer handles information.

Unlike conventional computers, which process digital data as “0 or 1,” quantum computers can process information in an in-between state where it is “both 0 and 1.” These quantum states behave like waves: they can overlap, reinforcing one another or canceling one another out. In computations that exploit this property, states that lead to the correct answer are amplified, while states that lead to wrong answers are suppressed.

Thanks to this interference between waves, a quantum computer can sift through many candidate answers at once. Our everyday computers take time because they evaluate each candidate one by one. Quantum computers, by contrast, can narrow down the answer in a single sweep—earning them the reputation of “dream machines” that could solve in an instant problem that might take hundreds of years on today’s computers.

Worms as particle sweepers: How simple movement, not intelligence, drives environmental order

When observing small worms under a microscope, one might observe something very surprising: the worms appear to make a sweeping motion to clean their own environment. Physicists at the University of Amsterdam, Georgia Tech and Sorbonne Université/CNRS have now discovered the reason for this unexpected behavior.

When centimeter-long aquatic worms, such as T. tubifex or Lumbriculus variegatus, are placed in a Petri dish filled with sub-millimeter-sized sand particles, something surprising happens. Over time, the worms begin to spontaneously clean up their surroundings. They sweep particles into compact clusters, gradually reshaping and organizing their environment.

In a study that was published in Physical Review X this week, a team of researchers show that this remarkable sweeping behavior does not require a brain, or any kind of complex interaction between the worms and the particles. Instead, it emerges from the natural undulating motion and flexibility that the worms possess.

Scientists Tracked a Monster Solar Region for 94 Days. Here’s What They Discovered

Our sun spins on its axis about once every 28 days. Because of that, any active region can be watched from earth for only around two weeks before it turns out of view, then it stays hidden for roughly another two weeks on the far side.

“Fortunately, the Solar Orbiter mission, launched by the European Space Agency (ESA) in 2020, has broadened our perspective,” says Ioannis Kontogiannis, solar physicist at ETH Zurich and the Istituto ricerche solari Aldo e Cele Daccò (IRSOL) in Locarno.

/* */