Toggle light / dark theme

The surface of the Earth’s inner core may be changing, as shown by a new study by USC scientists that detected structural changes near the planet’s center, published in Nature Geoscience.

The changes of the have long been a topic of debate for scientists. However, most research has been focused on assessing rotation. John Vidale, Dean’s Professor of Earth Sciences at the USC Dornsife College of Letters, Arts and Sciences and principal investigator of the study, said the researchers “didn’t set out to define the physical nature of the inner core.”

“What we ended up discovering is evidence that the near surface of Earth’s inner core undergoes structural change,” Vidale said. The finding sheds light on the role topographical activity plays in rotational changes in the inner core that have minutely altered the length of a day and may relate to the ongoing slowing of the inner core.

npj Quantum Inf ormation — Universal validity of the second law of information thermodynamics is indeed universal: it must hold for any quantum feedback control and erasure protocol, regardless of the measurement process involved, as long as the protocol is overall compatible with thermodynamics. Our comprehensive analysis not only encompasses new scenarios but also retrieves previous ones, doing so with fewer assumptions. This simplification contributes to a clearer understanding of the theory.

In the realm of quantum information distribution, sending a signal from point A to point B is like a baseball pitcher relaying a secret pitch call to the catcher. The pitcher has to disguise the signal from the opposing team and coaches, base runners, and even onlookers in the stands so no one else cracks the code.

The catcher can’t just stay in one spot or rely on the same finger pattern every time, because savvy opponents are constantly working to decipher any predictable sequence. If the signs are intercepted or misread, the batter gains an advantage, and the entire inning can unravel for the pitcher.

But what if there was a way for pitchers to bolster their signals by adding extra layers of “dimensionality” to each call, effectively increasing the chances of delivering it correctly to the catcher no matter how many eyes are watching? What if by incorporating more nuanced gestures—a subtle shift in glove position, a specific tap on the mound—the pitcher could craftily conceal their intentions?

Exotic superconducting states could exist in a wider range of materials than previously thought, according to a theoretical study by two RIKEN researchers published in Physical Review B.

Superconductors conduct electricity without any resistance when cooled below a that is specific to the . They are broadly classified into two types: conventional superconductors whose superconducting mechanism is well understood, and whose mechanism has yet to be fully determined.

Superconductors have intrigued scientists since their first experimental demonstration at the beginning of the 20th century. This is not just because they have numerous applications, including great promise for , but also because superconductors host a rich range of fundamental physics that has allowed physicists to gain a deeper understanding of material science.

The rapid advancement of technologies like artificial intelligence (AI) and the Internet of Things (IoT) has heightened the demand for high-speed, energy-efficient memory devices. Traditional memory technologies often struggle to balance performance with power consumption.

Spintronic devices, which leverage electron spin rather than charge, present a promising alternative. In particular, TMD materials are attractive due to their unique electronic properties and potential for miniaturization.

Researchers have proposed the development of gate-controllable TMD spin valves to address these challenges. By integrating a gate mechanism, these devices can modulate spin transport properties, enabling precise control over memory operations. This approach aims to enhance tunneling magnetoresistance (TMR) ratios, improve spin current densities, and reduce during read and write processes. The study is published in the Journal of Alloys and Compounds.

This allows them to see how bacteria activate different genes in response to their environment, offering insights into microbial behavior, antibiotic resistance, and infection strategies.

How Bacteria Organize Their Activities

How do bacteria — whether beneficial ones in our bodies or harmful disease-causing strains — coordinate their activities? A recent study has provided new insights by combining advanced genomic-scale microscopy with an innovative technique to track which genes bacteria activate in different conditions and environments. Published recently in the journal Science, this breakthrough is set to advance bacterial research significantly.

Scientists explored Human Accelerated Regions (HARs), genetic regulators that tweak existing genes rather than introducing new ones. Using cutting-edge techniques, they mapped nearly all HAR interactions, revealing their role in brain development and neurological disorders like autism and schizophrenia.

Decoding the Genetic Evolution of the Human Brain

A new Yale study offers a deeper understanding of the genetic changes that shaped human brain evolution and how this process differed from that of chimpanzees.

Scientists have discovered a remarkable new form of symbiosis — a bacterium that lives inside a single-celled organism (a ciliate) and provides it with energy. Unlike mitochondria, which use oxygen, this microbe powers its host by breathing nitrate.

Initially found in a freshwater lake, researchers set out to determine how widespread these microbes are. To their surprise, they uncovered them in diverse environments worldwide, from lakes and groundwater to even wastewater. This discovery challenges our understanding of microbial partnerships and reveals how these tiny organisms play a hidden yet significant role in global ecosystems.

A New Symbiotic Discovery

WASHINGTON — A Texas state agency awarded $47.7 million in grants to five space companies to support projects like construction of facilities and development of spacecraft in the state.

The Texas Space Commission announced Feb. 10 that it awarded the grants to Blue Origin, Firefly Aerospace, Intuitive Machines, SpaceX and Starlab Space. The grants are part of the commission’s Space Exploration and Aeronautics Research Fund (SEARF) program.

“Today’s awards will support Texas companies as we grow commercial, military and civil aerospace activity across the state,” Gwen Griffin, chair of the board of the commission, said in a statement.