Toggle light / dark theme

Phase transitions are a familiar part of life, representing predictable paths by which solids turn to liquids, mixtures turn to solutions, magnets become nonmagnetic. Temperature plays a central role in driving many phase transitions, however there are others that don’t depend on temperature at all—such as instabilities in social networks, bird flocking, and even the process of visual recognition in humans. Phase transitions represent change that impacts all length scales from the tiniest to the global, becoming permanent on time scales from the shortest to the longest. Most enigmatic are phase transitions that happen only at zero temperature, driven by the intrinsic quantum mechanical nature of matter. How are these quantum phase transitions different from temperature driven phase transitions? What are the different phases that can be explored by quantum systems at zero temperature? Living as we do at nonzero temperature, can we experience quantum phenomena that occur at zero temperature? Phase transitions and the ways in which they pattern space and time are at the heart of our developing understanding of quantum matter.

Meigan Aronson is an experimental condensed matter physicist whose research centers on the discovery and exploration of quantum materials. She received her undergraduate degree from Bryn Mawr College, and her PhD in Physics from the University of Illinois at Urbana-Champaign. After a postdoc at Los Alamos National Laboratory, she enjoyed faculty positions at the University of Michigan and at Stony Brook University, where she was also a group leader at Brookhaven National Laboratory. Her research uses neutron scattering to study the emergence of new phases of matter, especially novel types of order that are only found near quantum phase transitions. She is a Fellow of the American Physical Society and the Neutron Scattering Society of America, and has received the Department of Defense National Security Science and Engineering Fellowship. She is currently a Professor in the Department of Physics and Astronomy and a Principal Investigator at the Stewart Blusson Quantum Matter Institute at The University of British Columbia, where she also served as Dean of the Faculty of Science.

This public lecture was recorded at Aspen Center for Physics on Wednesday, February 26, 2025. Thank you to the Nick and Maggie DeWolf Foundation for making our winter lecture series possible since 1985.

#quantumphasetransitions #spin #quantummechanics #neutronscattering #quantumphases #physics

From connectome to computation:
predicting neural function with machine learning.

Janne Lappalainen.
University of Tubingen & Tubingen AI Center.

Presentation and Q&A
At the Carboncopies Foundation February 2025 workshop:

The brain emulation challenge: functionalizing brain data, ground-truthing and the role of artificial data in advancing neuroscience.

*This video was recorded at Foresight’s Whole Brain Emulation Workshop 2023.*
https://foresight.org/whole-brain-emulation-workshop-2023/

*Niccolò Zanichelli, Università degli Studi di Parma*
What can AI do for Whole Brain Emulation.
https://www.linkedin.com/in/niccol%C3%B2-zanichelli-99a7881a3/

WBE is a potential technology to generate software intelligence that is human-aligned simply by being based directly on human brains. Generally past discussions have assumed a fairly long timeline to WBE, while past AGI timelines had broad uncertainty. There were also concerns that the neuroscience of WBE might boost AGI capability development without helping safety, although no consensus did develop. Recently many people have updated their AGI timelines towards earlier development, raising safety concerns. That has led some people to consider whether WBE development could be significantly speeded up, producing a differential technology development re-ordering of technology arrival that might lessen the risk of unaligned AGI by the presence of aligned software intelligence.

Whether this is a viable strategy depends on.

Dr. Philip Shiu.
EON Systems.

Presentation and Q&A
At the Carboncopies Foundation February 2025 workshop:

The brain emulation challenge: functionalizing brain data, ground-truthing and the role of artificial data in advancing neuroscience.

“A good ratio of oxygen to methane is key to combustion,” said Justin Long.


Can methane flare burners be advanced to produce less methane? This is what a recent study published in Industrial & Engineering Chemistry Research hopes to address as a team of researchers from the University of Michigan (U-M) and the Southwest Research Institute (SwRI) developed a methane flare burner with increased combustion stability and efficiency compared to traditional methane flare burners. This study has the potential to develop more environmentally friendly burners to combat human-caused climate change, specifically since methane is a far larger contributor to climate change than carbon dioxide.

For the study, the researchers used a combination of machine learning and novel manufacturing methods to test several designs of a methane flare burner that incorporates crosswinds to simulate real-world environments. The burner design includes splitting the methane flow in three directions while enabling oxygen flow from crosswinds to mix with the methane, enabling a much cleaner combustion. In the end, the researchers found that their design achieves 98 percent combustion efficiency, meaning it produces 98 percent less methane than traditional burners.

“A good ratio of oxygen to methane is key to combustion,” said Justin Long, who is a Senior Research Engineer at SwRI. “The surrounding air needs to be captured and incorporated to mix with the methane, but too much can dilute it. U-M researchers conducted a lot of computational fluid dynamics work to find a design with an optimal air-methane balance, even when subjected to high-crosswind conditions.”

Georg Ferdinand Ludwig Philipp Cantor (/ ˈ k æ n t ɔːr / KAN-tor; German: [ˈɡeːɔʁk ˈfɛʁdinant ˈluːtvɪç ˈfiːlɪp ˈkantoːɐ̯] ; 3 March [O.S. 19 February] 1845 – 6 January 1918 [ 1 ] ) was a mathematician who played a pivotal role in the creation of set theory, which has become a fundamental theory in mathematics. Cantor established the importance of one-to-one correspondence between the members of two sets, defined infinite and well-ordered sets, and proved that the real numbers are more numerous than the natural numbers. Cantor’s method of proof of this theorem implies the existence of an infinity of infinities. He defined the cardinal and ordinal numbers and their arithmetic. Cantor’s work is of great philosophical interest, a fact he was well aware of. [ 2 ]

Originally, Cantor’s theory of transfinite numbers was regarded as counter-intuitive – even shocking. This caused it to encounter resistance from mathematical contemporaries such as Leopold Kronecker and Henri Poincaré [ 3 ] and later from Hermann Weyl and L. E. J. Brouwer, while Ludwig Wittgenstein raised philosophical objections; see Controversy over Cantor’s theory. Cantor, a devout Lutheran Christian, [ 4 ] believed the theory had been communicated to him by God. [ 5 ] Some Christian theologians (particularly neo-Scholastics) saw Cantor’s work as a challenge to the uniqueness of the absolute infinity in the nature of God [ 6 ] – on one occasion equating the theory of transfinite numbers with pantheism [ 7 ] – a proposition that Cantor vigorously rejected.

The results show two distinct patterns in the protective effect of natural infection against reinfection in the Omicron era compared to the pre-Omicron era. Before the emergence of Omicron, natural infection offered robust protection against reinfection, with roughly 80% effectiveness and minimal signs of waning over time after the infection. However, during the Omicron era, this protection was strong only for recently infected individuals, rapidly declining over time after the infection and ultimately diminishing within a year. These patterns were consistent regardless of whether any infection or only symptomatic infection was considered as an outcome, and for both vaccinated and unvaccinated populations.

The two distinct patterns observed in the Omicron versus pre-Omicron eras provide population-level results that validate previous experimental molecular evidence1,2,18,19,20, and are probably the result of a complex interplay of several interrelated factors, in addition to waning immunity, immune evasion and the accelerated and convergent evolution of Omicron, such as immune imprinting, varying immunogenicity, global population immunity faced by the strains and population characteristics associated with infections at different stages of the pandemic.

Whereas these factors are interconnected and challenging to disentangle, the observed differences in protection against reinfection may stem from distinct evolutionary pressures acting on SARS-CoV-2 during the pre-Omicron and Omicron eras. In the pre-Omicron era, with a large proportion of individuals remaining immune naive because of non-pharmaceutical interventions and delayed scale-up of vaccination, intrinsic transmissibility may have been the primary driver of viral adaptation. This was evidenced by the emergence of more transmissible variants such as Alpha4,22,23 and Delta24,25. Conversely, following the very large and widespread Omicron wave in early 2022 (Extended Data Fig. 3)26, most individuals possessed some level of immunity, either from infection or vaccination. This may have shifted the dominant evolutionary pressure towards immune escape through not only antigenic drift, but also recombination and convergent evolution as the adaptive mechanisms for the virus2,18,27,28.

Hippos spend 16 hours a day submerged in water. Withough Sun protection, they wouldn’t survive.

That reddish substance that sometimes appears on the skin of hippopotamuses?

That unique secretion serves as a sunscreen, protecting them from solar radiation. The secretion contains two highly acidic and unstable compounds: hipposudoric acid (red) and norhipposudoric acid (orange).

When these compounds mix with mucus and dry on the hippo’s skin, they form a durable layer that acts as a natural sunscreen, protecting the animal from harmful UV rays for hours. Hippos are semiaquatic, spending up to 16 hours a day submerged in water to stay cool, but this does not shield their skin from the sun, making their natural sunscreen essential.

Scientists believe the secretion is synthesized from amino acids when exposed to oxygen, though much about its exact mechanisms remains unknown. Recent research has revealed that the secretion, often referred to as “hippo sweat,” contains microscopic structures that scatter light, providing both sunblock and sunscreen properties. The substance also includes red and orange pigments capable of absorbing ultraviolet light, contributing to its effectiveness.

The highly anticipated 8th Integrated Flight Test of Starship and Superheavy has arrived! Our live coverage of this historic event will be hosted by Will Robinson-Smith from Spaceflight Now! Please show your support by liking and sharing this stream with your friends and family! Now let’s light this candle!

Support Spaceflight Now! @SpaceflightNowVideo.

If you would like to get involved with our community or learn more about Rockets and Space, please feel free to join our LabPadre Discord server at discord.gg/labpadre.

X: https://twitter.com/LabPadre.