Toggle light / dark theme

Quantum computers have the potential to revolutionize technology by solving complex calculations and computations that are difficult, if not impossible, for traditional computers. One major roadblock, however, is instability—quantum states can be easily disrupted by “noise” from their surrounding environments, causing errors in the systems. Overcoming instability is important in creating effective and reliable quantum computers and other quantum technologies.

Researchers at the University of Rochester—including John Nichol, an associate professor in the Department of Physics and Astronomy—have taken a key step toward reducing instability in , by focusing on an elusive state called a nuclear-spin . Although scientists have long suspected that the nuclear-spin dark state could exist, they haven’t been able to provide direct evidence of it—until now.

“By directly confirming the existence of the dark state and its properties, the findings not only validate decades of theoretical predictions but also open the door to developing more advanced quantum systems,” Nichol says.

Researchers at Washington University School of Medicine in St. Louis have conducted a longitudinal study on an individual carrying the presenilin 2 (PSEN2) p. Asn141Ile mutation, a genetic variant known to cause dominantly inherited Alzheimer’s disease (DIAD). The high risk individual, despite being 18 years past the expected age of clinical onset, has remained cognitively intact. Researchers investigated genetic, neuroimaging, and biomarker data to understand potential protective mechanisms.

Unlike typical DIAD progression, in this case was confined to the occipital lobe without spreading, suggesting a possible explanation for the lack of cognitive decline.

DIAD results from highly penetrant mutations in (APP), presenilin 1 (PSEN1), or PSEN2, which lead to abnormal amyloid-β processing and early-onset Alzheimer’s disease. The Dominantly Inherited Alzheimer Network (DIAN) was established to track DIAD mutation carriers and assess clinical, cognitive, and biomarker changes over time.

Combining concepts from statistical physics with machine learning, researchers at the University of Bayreuth have shown that highly accurate and efficient predictions can now be made as to whether a substance will be liquid or gaseous under given conditions. They have published their findings in Physical Review X.

Observation of a glass of water reveals that the water exists in two : liquid and gas. Even at room temperature, water molecules are constantly evaporating from the surface of the liquid water and passing into the gas phase. At the same time, some of the water molecules from the gas condense back into the liquid.

The transition from one phase to the other depends on temperature and pressure. Above a , the simultaneous coexistence of gas and liquid disappears. The resulting supercritical fluid no longer forms an interface. This is important for industrial processes such as separation, cleaning and production.

The default mode network (DMN) is a set of interconnected brain regions known to be most active when humans are awake but not engaged in physical activities, such as relaxing, resting or daydreaming. This brain network has been found to support a variety of mental functions, including introspection, memories of past experiences and the ability to understand others (i.e., social cognitions).

The DMN includes four main brain regions: the (mPFC), the (PCC), the angular gyrus and the hippocampus. While several studies have explored the function of this network, its anatomical structure and contribution to information processing are not fully understood.

Researchers at McGill University, Forschungszentrum Jülich and other institutes recently carried out a study aimed at better understanding the anatomy of the DMN, specifically examining the organization of neurons in the tissue of its connected brain regions, which is known as cytoarchitecture. Their findings, published in Nature Neuroscience, offer new indications that the DMN has a widespread influence on the human brain and its associated cognitive (i.e., mental) functions.

They say that change takes time. Well, that’s not the case for RNA. The small biological molecule acts like a switchboard operator, capable of changing its shape every few milliseconds so it can manipulate biological functions in the body. It has big jobs to carry out, after all, like copying genetic information into every living cell and activating the immune response.

A new multidisciplinary study from biophysicists and virologists at the UNC School of Medicine challenges this idea of shape-shifting RNA. Helen Lazear, Ph.D., associate professor of microbiology and immunology, and Qi Zhang, Ph.D., professor of biochemistry and biophysics, have discovered that a type of RNA in Zika virus, a mosquito-borne virus, can essentially freeze itself in time in an effort to make more copies of itself and further its spread in the body.

Their findings have not only sent ripples through the field of virology, but it has also given researchers new ammunition in the fight against RNA viruses. Their study, which was published in Nature Chemical Biology, paves the way for new therapies that can “unfreeze” these RNA structures to combat other mosquito-borne RNA viruses.

Traditional black holes, as predicted by Albert Einstein’s theory of General Relativity, contain what are known as singularities, i.e., points where the laws of physics break down. Identifying how singularities are resolved in the context of quantum gravity is one of the fundamental problems in theoretical physics.

Now, a team of experts from the Institute of Cosmos Sciences of the University of Barcelona (ICCUB) has described for the first time the creation of regular black holes from gravitational effects and without the need for the existence of exotic matter required by some previous models.

This discovery, published in the journal Physics Letters B, opens up new prospects for improving our understanding of the quantum nature of gravity and the true structure of space-time.

The trihydrogen cation (H3+) plays a key role in the interstellar chemistry. Here the authors, using state of the art experiments and computation, identify factors that govern H3+ formation from doubly ionized small organic molecules, offering guidelines for examining alternative sources of H3+ in the universe.

Their new stabilization method overcomes disruptions, keeping the network running smoothly and securely.

Quantum Breakthrough: First Entangled Signal Over Commercial Network

Researchers from the Department of Energy’s Oak Ridge National Laboratory (ORNL), EPB of Chattanooga, and the University of Tennessee at Chattanooga have successfully transmitted an entangled quantum signal over a commercial fiber-optic network. This achievement marks the first time multiple wavelength channels and automatic polarization stabilization have been used together — without any network downtime.

The Department of Energy is investing in next-gen microelectronics to curb skyrocketing energy demands. SLAC and other top institutions are developing innovative materials, AI-powered sensing, and brain-inspired computing to push efficiency to new levels. Powering the Future: The Energy Demand o.

Gaining insight could help understand the timing and process of life’s emergence. A research team led by a Rutgers-New Brunswick scientist has found that water arrived on Earth later in its formation than previously believed. This discovery has important implications for understanding when life first emerged on the planet.