Toggle light / dark theme

As fast as modern electronics have become, they could be much faster if their operations were based on light, rather than electricity. Fiber optic cables already transport information at the speed of light; to do computations on that information without translating it back to electric signals will require a host of new optical components.

Researchers at the John and Marcia Price College of Engineering have now developed such a device: one that can be adjusted on the fly to give light different degrees of circular polarization. Because information can be stored in this chiral property of light, the researchers’ device could serve as a multifunctional, reconfigurable component of an optical computing system.

Led by Weilu Gao, assistant professor in the Department of Electrical & Computer Engineering, and Jichao Fan, a Ph.D. candidate in his lab, a study demonstrating the device was published in the journal Nature Communications. Fellow Gao lab members Ruiyang Chen, Minhan Lou, Haoyu Xie, Benjamin Hillam, Jacques Doumani, and Yingheng Tang contributed to the study, as did Nina Hong of the J.A. Woollam Company.

Metalenses represent a revolutionary advancement in optical technology. Unlike conventional microscope objectives that rely on curved glass surfaces, metalenses employ nanoscale structures to manipulate light at the subwavelength level. Thanks to their ultrathin, lightweight, and flat architectures, metalenses can overcome the bulkiness of traditional lenses, making them ideal candidates for integration in electronic devices and compact imaging systems.

Despite their promising attributes for next-generation , metalenses face significant challenges in practical microscopy applications. Off-axis aberrations, which severely restrict metalens field of view (FOV) and resolution capabilities, are primary limitations.

The inherent trade-off between imaging resolution and FOV has prevented metalenses from achieving performance comparable to conventional microscopes. Although some prior metalens designs have achieved submicron resolution, they operated with an extremely restricted FOV, limiting their practical utility.

A team of physicists at the University of Cambridge has unveiled a breakthrough in quantum sensing by demonstrating the use of spin defects in hexagonal boron nitride (hBN) as powerful, room-temperature sensors capable of detecting vectorial magnetic fields at the nanoscale. The findings, published in Nature Communications, mark a significant step toward more practical and versatile quantum technologies.

“Quantum sensors allow us to detect nanoscale variations of various quantities. In the case of magnetometry, quantum sensors enable nanoscale visualization of properties like current flow and magnetization in materials leading to the discovery of new physics and functionality,” said Dr. Carmem Gilardoni, co-first author of this study at Cambridge’s Cavendish Laboratory.

“This work takes that capability to the next level using hBN, a material that’s not only compatible with nanoscale applications but also offers new degrees of freedom compared to state-of-the-art nanoscale .”

A study in Nature describes both the mechanism and the material conditions necessary for superfluorescence at room temperature. The work could serve as a blueprint for designing materials that allow exotic quantum states—such as superconductivity, superfluidity or superfluorescence—at high temperatures, paving the way for applications such as quantum computers that don’t require extremely low temperatures to operate.

The international team that did the work was led by North Carolina State University and included researchers from Duke University, Boston University and the Institut Polytechnique de Paris.

“In this work, we show both experimental and theoretical reasons behind macroscopic quantum coherence at high temperature,” says Kenan Gundogdu, professor of physics at NC State and corresponding author of the study.

Nature categorizes particles into two fundamental types: fermions and bosons. While matter-building particles such as quarks and electrons belong to the fermion family, bosons typically serve as force carriers—examples include photons, which mediate electromagnetic interactions, and gluons, which govern nuclear forces.

Solid-state batteries are seen as a game-changer for the future of energy storage. They can hold more power and are safer because they don’t rely on flammable materials like today’s lithium-ion batteries. Now, researchers at the Technical University of Munich (TUM) and TUMint. Energy Research have made a major breakthrough that could bring this future closer.

They have created a new material made from lithium, antimony, and a small amount of scandium. This material allows lithium ions to move more than 30 percent faster than any known alternative. That means record-breaking conductivity, which could lead to faster charging and more efficient batteries.

Led by Professor Thomas F. Fässler, the team discovered that swapping some of the lithium atoms for scandium atoms changes the structure of the material. This creates specific gaps, so-called vacancies, in the crystal lattice of the conductor material. These gaps help the lithium ions to move more easily and faster, resulting in a new world record for ion conductivity.