Toggle light / dark theme

Digital fashion marketplaces have recently opened, including DressX, hoping that shoppers will be keen to start a virtual wardrobe. Credit: DressX

Outfitting our digital personas is nothing new, from making pixelated Dollz in the early 2000s to shopping these days for new wardrobe additions in Animal Crossing. The video game industry has more recently laid the groundwork for digital fashion, with outfits or “skins,” in games like Overwatch and Fortnite generating billions in revenue.

Some major fashion players have already begun capitalizing on the gaming market — in 2019, Louis Vuitton designed skins for League of Legends, and Nike and Ralph Lauren have this year offered avatar accessories through the virtual world-building platform Roblox. Outside of gaming environments, NFTs — or non-fungible tokens, which use blockchain technology to verify ownership of digital assets — have allowed digital fashion to be monetized more broadly as well. (This fall, Dolce & Gabbana’s NFT collection sold out for 1,885.719 ETH, at the time equivalent to $6 million).

2021 saw massive growth in the demand for edge computing — driven by the pandemic, the need for more efficient business processes, as well as key advances in the Internet of Things, 5G and AI.

In a study published by IBM in May, for example, 94 percent of surveyed executives said their organizations will implement edge computing in the next five years.

From smart hospitals and cities to cashierless shops to self-driving cars, edge AI — the combination of edge computing and AI — is needed more than ever.

Kindly see my latest FORBES article on technology predictions for the next decade:

Thanks and have a great weekend! Chuck Brooks.


We are approaching 2022 and rather than ponder the immediate future, I want to explore what may beckon in the ecosystem of disruptive technologies a decade from now. We are in the initial stages of an era of rapid and technological change that will witness regeneration of body parts, new cures for diseases, augmented reality, artificial intelligence, human/computer interface, autonomous vehicles, advanced robotics, flying cars, quantum computing, and connected smart cities. Exciting times may be ahead.

By 2032, it will be logical to assume that the world will be amid a digital and physical transformation beyond our expectations. It is no exaggeration to say we are on the cusp of scientific and technological advancements that will change how we live and interact.

A new study claims machine learning is starting to look a lot like human cognition.

In 2019, The MIT Press Reader published a pair of interviews with Noam Chomsky and Steven Pinker, two of the world’s foremost linguistic and cognitive scientists. The conversations, like the men themselves, vary in their framing and treatment of key issues surrounding their areas of expertise. When asked about machine learning and its contributions to cognitive science, however, their opinions gather under the banner of skepticism and something approaching disappointment.

“In just about every relevant respect it is hard to see how [machine learning] makes any kind of contribution to science,” Chomsky laments, “specifically to cognitive science, whatever value it may have for constructing useful devices or for exploring the properties of the computational processes being employed.”

While Pinker adopts a slightly softer tone, he echoes Chomsky’s lack of enthusiasm for how AI has advanced our understanding of the brain:

“Cognitive science itself became overshadowed by neuroscience in the 1990s and artificial intelligence in this decade, but I think those fields will need to overcome their theoretical barrenness and be reintegrated with the study of cognition — mindless neurophysiology and machine learning have each hit walls when it comes to illuminating intelligence.”

Albert Einstein and Stephen Hawking – the most famous physicists of the twentieth century — both spent decades trying to find a single law that could explain how the world works on the scale of the atom and on the scale of galaxies. In short, the Standard Model describes the physics of the very small. General relativity describes the physics of the very large. The problem? The two theories tell different stories about the fundamental nature of reality. Einstein described the problem nearly a century ago in his 1923 Nobel lecture 0, telling the audience that a physicist who searches for, “an integrated theory cannot rest content with the assumption that there exist two distinct fields totally independent of each other by their nature.” Even while on his deathbed, Einstein worked on a way to unite all the laws of physics under one unifying theory.

5G will probably not hurt you, but having these products anywhere around definitely will.

5G is rapidly overtaking other wireless technology networks and may very soon become the standard for cell phone coverage. But there has been a lot of backlash with protesters stating the technology might be harmful to human health.

This has resulted in a rise of anti-5G products that claim to protect against the supposedly harmful radiation. A lot of these products have been discovered to be scams and now a new report from BBC reveals they may actually be dangerous.

The Dutch authority for nuclear safety and radiation protection (ANVS) issued a warning about ten products it found to be radioactive, and anti 5G necklaces were found to be one of them. The ANVS warned that these products could cause harm with long-term wear.

“Don’t wear it anymore, put it away safely and wait for the return instructions,” the ANVS said in a statement.

Just in time for Christmas.

Scientists from the European Space Agency (ESA) will soon open a container of Moon soil that has gone untouched since it was collected by the Apollo 17 astronauts almost 50 years ago, a press statement reveals.

To open the sample, they will have to use a specialized piercing tool jokingly titled the “Apollo Can Opener” by members of the team. The tool was specially designed to open the specific soil sample, designated the number 73001.

A double-sealed 50-year-old Moon soil sample The Moon soil sample was collected on the Moon in 1972 at the Taurus-Littrow Valley by Apollo 17 astronaut Gene Cernan, the last person to have set foot on the Moon. Cernan hammered a 70-cm-long cylindrical tube into the Moon’s surface to retrieve a core sample of the lunar soil. The sample was then sealed in a vacuum-tight container on the Moon before it was returned to Earth. Once on Earth, the vacuum-sealed sample was then placed in a vacuum chamber for added protection.

Full Story:

The nature of dark matter continues to perplex astronomers. As the search for dark matter particles continues to turn up nothing, it’s tempting to throw out the dark matter model altogether, but indirect evidence for the stuff continues to be strong. So what is it? One team has an idea, and they’ve published the results of their first search.

The conditions of dark matter mean that it can’t be regular matter. Regular matter (atoms, molecules, and the like) easily absorbs and emits light. Even if dark matter were of molecules so cold they emitted almost no light, they would still be visible by the light they absorb. They would appear like dark nebulae commonly seen near the galactic plane. But there aren’t nearly enough of them to account for the effects of dark matter we observe. We’ve also ruled out neutrinos. They don’t interact strongly with light, but neutrinos are a form of “hot” dark matter since neutrinos move at nearly the speed of light. We know that most dark matter must be sluggish, and therefore “cold.” So if dark matter is out there, it must be something else.

In this latest work, the authors argue that dark matter could be made of particles known as scalar bosons. All known matter can be placed in two large categories known as fermions and bosons. Which category a particle is in depends on a quantum property known as spin. Fermions such as electrons and quarks have fractional spin such as 1/2 or 3/2. Bosons such as photons have an integer spin such as 1 or 0. Any particle with a spin of 0 is a scalar boson.