Toggle light / dark theme

Despite its almost perfect anti-aging profile, rapamycin exerts one significant limitation – inappropriate physicochemical properties. Therefore, we have decided to utilize virtual high-throughput screening and fragment-based design in search of novel mTOR inhibiting scaffolds with suitable physicochemical parameters. Seven lead compounds were selected from the list of obtained hits that were commercially available (4, 5, and 7) or their synthesis was feasible (1, 2, 3, and 6) and evaluated in vitro and subsequently in vivo. Of all these substances, only compound 3 demonstrated a significant cytotoxic, senolytic, and senomorphic effect on normal and cancerous cells. Further, it has been confirmed that compound 3 is a direct mTORC1 inhibitor. Last but not least, compound 3 was found to exhibit anti-SASP activity concurrently being relatively safe within the test of in vivo tolerability. All these outstanding results highlight compound 3 as a scaffold worthy of further investigation.

GRAPHICAL ABSTRACT

My name is Asim, Global Product Marketing Lead for Peridot, and I’m excited to share some news about our Peridot franchise that I’m incredibly passionate about.

Virtual pets have long been a source of fun and entertainment. But what if they could help us recover from injuries and illnesses, too?

Today we’re announcing our partnership with Augment Therapy, a digital health company building accessible immersive exercise software for healthcare. Together, we aim to help people recover from injuries and illnesses faster by creating new Peridot-inspired experiences for physical rehabilitation use cases in pediatric and geriatric care. What makes this partnership truly exceptional is our shared vision: leveraging cutting-edge technology to encourage movement and promote well-being.

Earth’s magnetic field dramatically flipped a little more than 40,000 years ago. We can now experience this upheaval as an unnerving clatter interpreted from information collected by the European Space Agency’s Swarm satellite mission.

Combining the satellite data with evidence of magnetic field line movements on Earth, European geoscientists mapped the so-called Laschamps event and represented it using natural noises like the creaking of wood and the crashing of colliding rocks.

The resulting compilation from the Technical University of Denmark and the German Research Center for Geosciences is unlike anything you’ve ever heard.

Graviton to photon conversion via parametric resonance https://www.sciencedirect.com/science/article/pii/S2212686423000365z


In a groundbreaking discovery, physicists have found that gravity can create light under certain conditions, opening up new avenues of research in astrophysics and cosmology.

New findings using data from NASA’s IXPE (Imaging X-ray Polarimetry Explorer) mission offer unprecedented insight into the shape and nature of a structure important to black holes called a corona. The findings are published in The Astrophysical Journal.

The system that produced this outburst is referred to as CXOU J005245.0–722844. It was recently identified by members of the Einstein Probe team and confirmed by the Swift team as the seventh-known example of a Be/White Dwarf X-ray binary. Be/White Dwarf binaries are binary systems in which a white dwarf star orbits a hot young star surrounded by a disk of stellar material. Astronomers expect these binaries to be commonly observed, Gaudin said, and the lack of known examples is a mystery.

“Novae are explosions that happen when material from a nearby star is deposited onto the surface of a white dwarf,” Gaudin said. “After enough material has been built up, the surface undergoes rapid thermonuclear fusion which creates the outburst. Most are events that reach moderate luminosities and decay over the course of several weeks. This nova is strange not just in its extremely luminous behavior but also in its short duration.”

The thermonuclear reaction during the nova is similar to a massive hydrogen bomb exploding—the explosion produces that can be seen by telescopes on Earth and in orbit around Earth. According to the researchers, the nova was visible at optical wavelengths, or , for just under a week and in X-rays for just under two weeks.

From subatomic particles to complex molecules, quantum systems hold the key to understanding how the universe works. But there’s a catch: when you try to model these systems, that complexity quickly spirals out of control—just imagine trying to predict the behavior of a massive crowd of people where everyone is constantly influencing everyone else. Turn those people into quantum particles, and you are now facing a “quantum many-body problem.”