Toggle light / dark theme

In a groundbreaking study on the synthesis of cellulose—a major constituent of all plant cell walls—a team of Rutgers University-New Brunswick researchers have captured images of the microscopic process of cell-wall building continuously over 24 hours with living plant cells, providing critical insights that may lead to the development of more robust plants for increased food and lower-cost biofuels production.

The discovery, published in the journal Science Advances, reveals a never seen before and may provide practical applications for everyday products derived from plants, including enhanced textiles, biofuels, biodegradable plastics, and new medical products.

The research is also expected to contribute to the fundamental knowledge while providing a new understanding of the formation of cell walls, the scientists said.

Neura Robotics has built a diverse portfolio of robots, including MAiRA, the world’s first cognitive cobot. MAiRA uses artificial intelligence for autonomous operation and safe human interaction. The company also offers the MAV, a mobile robot for heavy load transport, and MiPA, a humanoid robot designed for tasks like serving trays in hospitals.

Through its cloud-based Neuraverse platform, Neura also creates cutting-edge software, in contrast to many robotics companies that only concentrate on hardware. Known as an “ecosystem for cognitive robotics,” the Neuraverse is a marketplace for robotic abilities and an operating system designed to spur innovation.

Many businesses displayed humanoid robots at CES 2025, demonstrating the momentum of the robotics sector. The humanoid robot “Melody,” created by Realbotix, is simple to assemble and disassemble. In the meantime, the full-size bipedal humanoid robot known as the “CASBOT 01” was introduced by China’s Lingbao CASBOT.

The goal of enabling extended deep-space exploration is driving NASA, space agencies, and private players to explore nuclear power solutions.

Recently, two Southern California-based startups, Exlabs and Antares Nuclear, announced a partnership to advance deep-space missions with nuclear-powered spacecraft.

SpaceNews reported that the Exlabs’ Science Exploration and Resource Vehicle (SERV) spacecraft will be equipped with Antares microreactors.

A group of Carnegie Mellon University researchers recently devised a method allowing them to create large amounts of a material required to make two-dimensional (2D) semiconductors with record high performance. Their paper, published in ACS Applied Materials & Interfaces in late December 2024, could lead to more efficient and tunable photodetectors, paving the way for the next generation of light-sensing and multifunctional optoelectronic devices.

“Semiconductors are the key enabling technology for today’s electronics, from laptops to smartphones to AI applications,” said Xu Zhang, assistant professor of electrical and computer engineering. “They control the flow of electricity, acting as a bridge between conductors (which allow electricity to flow freely) and insulators (which block it).”

Zhang’s research group wanted to develop a certain kind of photodetector, a device capable of detecting light and which can be used in a variety of applications. To create this photodetector, the group needed to use materials that were an atom’s-width thick, or as close to 2D as is possible.

A research team led by Professor Sun Qing-Feng in collaboration with Professor He Lin’s research group from Beijing Normal University has achieved orbital hybridization in graphene-based artificial atoms for the first time.

Their study, titled “Orbital hybridization in graphene-based artificial atoms” has been published in Nature. The work marks a significant milestone in the field of quantum physics and , bridging the gap between artificial and real atomic behaviors.

Quantum dots, often called artificial atoms, can mimic but have not yet been used to simulate orbital hybridization, a crucial process in real atoms. While quantum dots have successfully demonstrated artificial bonding and antibonding states, their ability to replicate orbital hybridization remained unexplored.

While biodiesel provides a cleaner-burning alternative to petroleum diesel, it produces CO2 and hazardous wastewater during manufacturing, requiring extra steps to achieve sustainability. A diagnostic study led by University of Michigan researchers works to improve a process that captures CO2 while treating biodiesel wastewater and produces valuable co-products like fuels and green chemicals.

During biodiesel production, fats—like , or recycled restaurant grease—are transformed into fuel through a process called transesterification. With the help of a , an alcohol (typically methanol) breaks the bonds in the fat molecules to create glycerol and long, chain-like molecules called fatty acid esters.

The fatty acid esters, which resemble petroleum diesel’s molecular structure, become biodiesel while the glycerol goes into the wastewater as a byproduct. If left untreated, glycerol can pollute natural water resources by depleting , suffocating fish and other organisms.

In recent years, researchers have been trying to develop increasingly advanced battery technologies that can be charged faster and store more energy, while also remaining safe and stable over time. Lithium-metal batteries (LMBs), which contain a lithium-metal-based anode, have been found to be promising alternatives to lithium-ion batteries (LiBs), which are currently the most widely used rechargeable batteries.

A key advantage of LMBs is that they can store significantly more energy than LiBs, which could be advantageous for and other large or advanced electronics. Despite their potential, these batteries have so far proved to be less stable and safe than LiBs, while also charging relatively slowly; limitations that have so far prevented their widespread adoption.

A research team at the Korea Advanced Institute of Science and Technology (KAIST) and other institutes recently designed new based on symmetric organic salts, which could help to boost the performance of LMBs. Their newly designed electrolytes, introduced in a paper in Nature Energy, were found to improve the stability and charging speed of LMBs, preventing the formation of dendrites (lithium deposits that cause a battery’s performance to decline over time).

Redox reactions form the basis of many fundamental processes of life. Without them, neither cellular respiration nor photosynthesis could take place. Redox reactions also play a crucial role in applications in the domains of chemistry, biochemistry, and the use of light for energy generation. Understanding the fundamental principles of these reactions is therefore important for driving forward new technologies.

Using an innovative method based on high pressures, a team led by LMU chemist Professor Ivana Ivanović-Burmazović and Professor Dirk Guldi from FAU Erlangen-Nürnberg has managed for the first time to differentiate two related reaction mechanisms. The research is published in the journal Nature Chemistry.