Toggle light / dark theme

MIT team develops steerable soft thread-like robot capable of navigating tiny blood vessels

Snake robots are among the most familiar type of mechanical device for working in confined spaces. Flexible, tubular robots have been used for applications such as working in the interior of nuclear reactors, water distribution systems and inside the human body to aid surgery. The MIT team, mechanical engineers affiliated to the institution’s Institute for Soldier Nanotechnologies, have downsized the snake paradigm to the scale of a thread half a millimetre in diameter, which can be remotely controlled by magnetic fields to worm its way through the convoluted blood vessels of the brain to deliver clot-busting drugs or devices to break up and remove the blockage. Such robots have the potential to quickly treat a stroke and prevent damage to the brain, the team claims.

| Hackaday


Quantum computers aren’t quite ready for the home lab, but since there are ways to connect to some over the Internet, you can experiment with them more easily than you might think. [Norbert] decided to interface a giant quantum computer to an ordinary Arduino. Why? Well, that isn’t necessarily clear, but then again, why not? He explains basic quantum computing and shows his setup in the video below.

Using the IBM quantum computer and the open source Qiskit makes it relatively easy, with the Python code he’s using on the PC acting as a link between the Arduino and the IBM computer. Of course, you can also use simulation instead of using the real hardware, and for such a simple project it probably doesn’t matter.

Light-matter interactions form the basis of many important technologies, including lasers, light-emitting diodes (LEDs), and atomic clocks. However, usual computational approaches for modeling such interactions have limited usefulness and capability. Now, researchers from Japan have developed a technique that overcomes these limitations.

In a study published this month in The International Journal of High Performance Computing Applications, a research team led by the University of Tsukuba describes a highly efficient method for simulating light-matter interactions at the atomic scale.

What makes these interactions so difficult to simulate? One reason is that phenomena associated with the interactions encompass many areas of physics, involving both the propagation of light waves and the dynamics of electrons and ions in matter. Another reason is that such phenomena can cover a wide range of length and time scales.