Toggle light / dark theme

High-fidelity touch has the potential to significantly expand the scope of what we expect from computing devices, making new remote sensory experiences possible. The research on these advancements, led by a pair of researchers from the J. Mike Walker Department of Mechanical Engineering at Texas A&M University, could help touchscreens simulate virtual shapes.

Dr. Cynthia Hipwell is studying at the finger-device level, while Dr. Jonathan Felts is researching friction in the interaction between single skin cells and the glass of the touchscreen interface. The two are bringing together their respective areas of expertise to apply friction principles at the to finger-device interaction mechanics.

Hipwell highlighted the significance of the pursuit by comparing it to the technologies currently available for conveying immersive and through high-fidelity audio and video.

Elon Musk’s Starlink internet project continues to move forward, launch by launch.

SpaceX launched another 47 internet-beaming satellites from Kennedy Space Center in Florida on Thursday morning.

Nine minutes after launch, the Falcon 9 rocket’s first stage that lifted the Starlink satellites returned to the planet, making a perfect landing on the *Just Read the Instructions* drone ship in the Atlantic Ocean.

## SpaceX launches 47 more Starlink satellites after supplying Ukraine with terminals.

Scientists from Roswell Park Comprehensive Cancer Center have shed light on a different way of overcoming mechanisms of resistance to specific therapeutic agents used to treat cancer. In a new article published March 1 in the journal Cell Reports, the researchers propose a new approach to cancer treatment based on the way different cancer cells divide.

A collaborative team led by Agnieszka Witkiewicz, MD, Professor of Oncology, and Erik Knudsen, Ph.D., Professor of Oncology and Chair of Molecular and Cellular Biology, from Roswell Park investigated over 500 from a multitude of cancer types, as well as preclinical tumor models. The researchers then analyzed based on their dependency for CDK and CCN, two genes that drive the cell cycle and determine how often a cancer cell divides.

“We found that the way cancer cells divide is highly varied, and that diversity represents a tremendous challenge for some widely used cancer therapies because it often contributes to treatment resistance,” says Dr. Witkiewicz, the study’s senior author. “However, with a better understanding of these heterogenous features of cancer cell division, different therapies could be deployed in a more precise and effective fashion.”

Turbojet engines are an incredible piece of 20th century engineering that except for some edge cases, have mostly been replaced by Turbofans. Still, even the most basic early designs were groundbreaking in their time. Material science was applied to make them more reliable, more powerful, and lighter. But all of those incredible advances go completely out the window when you’re [Joel] of [Integza], and you prefer to build your internal combustion engines using repurposed butane canisters and 3D printed parts as you see in the video below the break.

To understand [Integza]’s engine, a quick explanation of Turbojet engines is helpful. Just like any other internal combustion engine, air is compressed, fuel is burned, and the reaction produces work. In a turbojet, a compressor compresses air. Fuel is added in a combustor and ignited, and the expanding exhaust drives a turbine that in turn drives the compressor since both are attached to the same shaft. Exhaust whose energy isn’t spent in turning the turbine is expelled and produces thrust, which propels the engine and the vehicle it’s attached to in the opposite direction. Simple, right? Right! Until the 3D printer comes in.

Sadly for 3D printed parts, they are made of plastic. Last we checked, plastic isn’t metal, and so 3D printing a turbine to give the extremely hot exhaust something turn just isn’t going to work. But what if you just skipped the whole turbine part, and powered the compressor with an electric motor? And instead of using an axial compressor with tons of tiny blades that would likely be impossible to 3D print with enough strength, you went with a sturdy, easy to print centrifugal compressor? Of course, that’s exactly what [Integza] did, or we wouldn’t be talking about it. The results are fantastic, especially considering that the entire machine was built with 3D printing and a home made spot welder.