Toggle light / dark theme

Can you crumple up two sheets of paper the exact same way? Probably not—the very flexibility that lets flexible structures from paper to biopolymers and membranes undergo many types of large deformations makes them notoriously difficult to control. Researchers from the Georgia Institute of Technology, Universiteit van Amsterdam, and Universiteit Leiden have shed new light on this fundamental challenge, demonstrating that new physical theories provide precise predictions of the deformations of certain structures, as recently published in Nature Communications.

In the paper, Michael Czajkowski and D. Zeb Rocklin from Georgia Tech, Corentin Coulais from Universiteit van Amsterdam, and Martin van Hecke of AMOLF and Universiteit Leiden approach a highly studied exotic elastic material, uncover an intuitive geometrical description of the pronounced—or nonlinear—soft deformations, and show how to activate any of these deformations on-demand with minimal inputs. This new theory reveals that a flexible mechanical structure is governed by some of the same math as electromagnetic waves, phase transitions, and even black holes.

“So many other systems struggle with how to be strong and solid in some ways but flexible and compliant in others, from the human body and micro-organisms to clothing and industrial robots,” said Rocklin. “These structures solve that problem in an incredibly elegant way that permits a single folding mechanism to generate a wide family of deformations. We’ve shown that a single folding mode can transform a structure into an infinite family of shapes.”

One year after winter storms crippled Texas’s electricity grid, contributing to more than 200 deaths, a Cornell University-led analysis recommends contracting improvements to reduce decentralized energy markets’ vulnerability to rare events.

Such “energy-only” markets rely on investors to anticipate demand for all conditions and build appropriate resiliency into the system. They allow prices to soar during extreme events to incentivize preparedness.

But in Texas, where Winter Storm Uri caused catastrophic blackouts over five consecutive days of frigid temperatures, the crisis revealed the market’s failure to manage risk as designed, says Jacob Mays, assistant professor in the School of Civil and Environmental Engineering at Cornell. Winterization investment fell short, he said, because the payoff proved too distant and uncertain.

Researchers at École Polytechnique Fédérale de Lausanne (EPFL) and the Hitachi Cambridge Laboratory have recently designed an integrated circuit (IC) that integrates silicon quantum dots with conventional readout electronics. This chip, introduced in a paper published in Nature Electronics, is based on a 40-nm cryogenic complementary metal-oxide semiconductor (CMOS) technology that is readily and commercially available.

“Our recent paper builds on the expertise of the two groups involved,” Andrea Ruffino, one of the researchers at EPFL who carried out the study, told TechXplore. “The goal of our group was to build cryogenic (Bi)CMOS for readout and control of quantum computers, to be co-packaged or co-integrated in the final stage with silicon quantum processors. On the other hand, the team at the Hitachi Cambridge Laboratory have been studying silicon for many years.”

Ruffino and his colleagues at EPFL joined forces with the team at the Hitachi Cambridge Laboratory with the common goal of uniting classical circuits and quantum devices on a . Their paper builds on some of their previous efforts, including the proposal of cryogenic CMOS ICs for quantum computing, as well as the realization of fast-sensing and time-multiplexed sensing of silicon quantum devices.

Malware families are making use of PrivateLoader’s pay-per-install service in order to expand their victim list.


A detailed examination of a Pay-per-install (PPI) malware service called PrivateLoader has revealed its crucial role in the delivery of a variety of malware such as SmokeLoader, RedLine Stealer, Vidar, Raccoon, and GCleaner since at least May 2021.

A new research methodology has allowed specialists to track active vendors in several dark web platformsbased solely on how they write their ads and posts. Using stylometry, the experts were able to analyze thousands of identities of various suppliers in black markets and identify if these profiles correspond to specific people.

This study involved the collection of nodes of information extracted from vendor profiles on four now-shutdown cybercriminal platforms, including Valhalla, Dream Market, Evolution, and Silk Road 2.

Unity acquires Ziva Dynamics, leader in sophisticated simulation and deformation, machine learning, and real-time character creation.

At Unity, we are laser-focused on democratizing tools for creators, so that the industry’s most brilliant gems are available to all, not just a select few. And we are continuously focused on helping artists make their dreams a reality.

We recently acquired Weta Digital’s tools, technology, and engineering talent to deliver on this vision. Today, we’re proud to announce that we’re doubling down on our commitment to artists with the acquisition of Ziva Dynamics.

Read more on the Unity Blog: https://on.unity.com/3GXz4Kp

A new set of molecular building blocks aims to make complex chemistry as simple and accessible as a toy construction kit.

Researchers at the University of Illinois Urbana-Champaign and collaborators at Revolution Medicines Inc. developed a new class of chemical building blocks that simply snap together to form 3D with complex twists and turns, and an automated machine to assemble the blocks like a 3D printer for molecules.

This automation could allow chemists and nonchemists alike to develop new pharmaceuticals, materials, diagnostic probes, catalysts, perfumes, sweeteners and more, said study leader Dr. Martin D. Burke, a professor of chemistry at Illinois and a member of the Carle Illinois College of Medicine, as well as a medical doctor. The researchers reported their findings in the journal Nature.