Toggle light / dark theme

While driven by the desire to pursue curiosity, fundamental investigations are the crucial first step to innovation.


When scientists announced their discovery of gravitational waves in 2016, it made headlines all over the world. The existence of these invisible ripples in space-time had finally been confirmed.

It was a momentous feat in basic research, the curiosity-driven search for fundamental knowledge about the universe and the elements within it. Basic (or “blue-sky”) research is distinct from applied research, which is targeted toward developing or advancing technologies to solve a specific problem or to create a new product.

But the two are deeply connected.

Separating the resin, fiberglass, and wood, among others, is achieved through using a mild acid solution. The materials can then go into the circular economy, creating new products like suitcases or flat-screen casings without the need to call on more raw resources.

The RecyclableBlade technology was developed in Aalborg, Denmark, and the blades were manufactured in Hull in the UK (pictured above). The nacelles were produced and installed in Cuxhaven, Germany. Siemens Gamesa has a plan to make all of its wind turbine blades fully recyclable by 2030 and all of its wind turbines fully recyclable by 2040.

Come Monday, August 8, and a drone delivery mailbox located in a suburb of Indianapolis will create history by accepting traditional posts from US Mail. That delivery will be followed by McDonald’s delivering Big Mac and french fries to the same mailbox through a drone.

Dronedek smart drone mailboxes are powered by Oracle. The company uses a platform-agnostic approach to consolidate and funnel deliveries (and pickups) from all carriers, couriers, and logistics services to GPS-verified locations. Dronedek is in talks with several national delivery services, including UberEats, DoorDash, and other major retail delivery companies, to cater to its next-gen mailbox.

Concerns regarding scarcity, high prices, and safety regarding the long-term use of lithium-ion batteries has prompted a team of researchers from Rensselaer Polytechnic Institute to propose a greener, more efficient, and less expensive energy storage alternative.

In research published recently in Proceedings of the National Academy of Science (PNAS), corresponding author Nikhil Koratkar, the John A. Clark and Edward T. Crossan Professor of Engineering at Rensselaer, and his team, assert that could be used as an alternative to lithium-ions in batteries because of its abundance and low cost.

“The vast majority of rechargeable battery products are based on lithium-ion technology, which is the gold standard in terms of performance,” said Dr. Koratkar. “However, the Achilles’ heel for lithium-ion technology is cost. Lithium is a limited resource on the planet, and its price has increased drastically in recent years. We are working on an inexpensive, abundant, safe, and sustainable battery chemistry that uses ions in an aqueous, water-based electrolyte.”

Researchers have created synthetic mouse embryos out of stem cells, removing the need for sperm, eggs and even a womb. They were then grown to almost half the entire gestation period, at which point they had all of the organ progenitors, including a beating heart. The tech could eventually be used to grow organs for transplant.

The new study, from researchers at the Weizmann Institute of Science in Israel, built on two branches of the team’s previous research. The first involved reprogramming stem cells into a “naive” state that allows them to differentiate into all other cells, including other stem cells. The other work focused on developing a device that could grow embryos more effectively outside of the womb.

By combining the two techniques, the team has now grown some of the most advanced synthetic mouse embryos to date. They started with naive mouse stem cells, which had been cultured in a Petri dish for several years prior. These were separated into three groups that would play key roles in the embryo development.