Toggle light / dark theme

“We saw a very large coronal mass ejection, which is a major storm on the sun,” Todd explained. “It happened on the far side, which is awfully good because it was enormous.”

Though the explosive CME is not expected to strike Earth, images captured by satellite and seismic mapping showing the sheer size of the eruption had many people talking, Todd said.

Todd said scientists estimate the flare stretched to roughly 400,000 kilometers, greater than the distance between the Earth and the Moon.

[Stefan] from CNCKitchen wanted to make some bendy tubes for a window-mountable ball run, and rather than coming up with some bent tube models, it seemed there might be a different way to achieve the desired outcome. Starting with a simple tube model designed to be quickly printed in vase mode, he wrote a Python script which read in the G-Code, and modified it allow it to be bent along a spline path.

Vase mode works by slowly ramping up the Z-axis as the extruder follows the object outline, but the slicing process is still essentially the same, with the object sliced in a plane parallel to the bed. Whilst this non-planar method moves the Z-axis in sync with the horizontal motion (although currently limited to only one plane of distortion, which simplifies the maths a bit) it is we guess still technically a planar solution, but just an inclined plane. But we digress, non-planar in this context merely means not parallel to the bed, and we’ll roll with that.

[Stefan] explains that there are quite a few difficulties with this approach. The first issue is that on the inside of the bend, the material flow rate needed to be scaled back to compensate. But the main problem stems from the design of the extruder itself. Intended for operating parallel to the bed, there are often a few structures in the way of operating at an angle, such as fan mounts, and the hotend itself. By selecting an appropriate machine and tweaking it a bit, [Stefan] managed to get it to work at angles up to 30 degrees off the horizontal plane. One annoyance was that the stock nozzle shape of his E3D Volcano hotend didn’t lend itself to operating at such an inclination, so he needed to mount an older V6-style tip with an adapter. After a lot of tuning and fails, it did work and the final goal was achieved! If you want to try this for yourselves, the code for this can be found on the project GitHub.

The Standard Model is one of the most well-tested theories in particle physics. But scientists are searching for new physics beyond it.

In particle physics, “annihilation” is a transformation.

Building experimental evidence suggests that the electron, muon and tau may feel different forces.

They’re focusing on cargo transport instead of passengers. So they’re downsizing.


Virgin Hyperloop has fired 111 of its employees as it abandons the idea of making its system ready for passenger use. The Financial Times is reporting that the company is exclusively focusing on moving cargo, and has slashed almost half of its total workforce. A spokesperson confirmed to the paper that the shift in business was taking place, with supply chain issues and COVID contributing to the change.

Since its inception, the company has been developing its vacuum-tube system to carry both passengers and freight. One of the earliest concepts VH floated was an “inland port,” in which cargo vessels would put containers onto capsules that are shot inland before they’re processed. That way, the main logistics hub wouldn’t need to be beside the sea, and could instead be at the heart of a transit hub closer to customers.

It’s something that encouraged DP World, the Dubai-owned ports and logistics giant, to invest in the technology. It currently holds a majority stake in Virgin Hyperloop and in 2018 launched “Cargospeed,” as a sub-brand dedicated to moving cargo. VH has, however, been in something of a spin for the last few months after former head Josh Giegel, one of two people to actually travel in a pod, quit the company.

With the advent of Big Data, current computational architectures are proving to be insufficient. Difficulties in decreasing transistors’ size, large power consumption and limited operating speeds make neuromorphic computing a promising alternative.

Neuromorphic computing, a new brain-inspired computation paradigm, reproduces the activity of biological synapses by using artificial neural networks. Such devices work as a system of switches, so that the ON position corresponds to the information retention or “learning,” while the OFF position corresponds to the information deletion or “forgetting.”

In a recent publication, scientists from the Universitat Autònoma de Barcelona (UAB), the CNR-SPIN (Italy), the Catalan Institute of Nanoscience and Nanotechnology (ICN2), the Institute of Micro and Nanotechnology (IMN-CNM-CSIC) and the ALBA Synchrotron have explored the emulation of artificial synapses using new advanced material devices. The project was led by Serra Húnter Fellow Enric Menéndez and ICREA researcher Jordi Sort, both at the Department of Physics of the UAB, and is part of Sofia Martins Ph.D. thesis.

In the field of optogenetics, scientists investigate the activity of neurons in the brain using light. A team led by Prof. Dr. Ilka Diester and Dr. David Eriksson from the Optophysiology Laboratory at the University of Freiburg has developed a new method to simultaneously conduct laminar recordings, multifiber stimulations, 3D optogenetic stimulation, connectivity inference, and behavioral quantification on brains. Their results are presented in Nature Communications. “Our work paves the way for large-scale photo-recording and controlled interrogation of fast neural communication in any combination of brain areas,” Diester explains. “This can help us unravel the rapid and multilayered dialogs between neurons that maintain brain function.”

The research group, in collaboration with Dr. Patrick Ruther of the Department of Microsystems Engineering (IMTEK) at the University of Freiburg, is developing a new method for the controlled interrogation and recording of neuronal activity in the . To do this, the team is taking advantage of thin, cell-sized optical fibers for minimally invasive optogenetic implantation. “We combine side-emitting fibers with silicon probes to achieve high-quality recordings and ultrafast, multichannel optogenetic control.”

They call the system Fused Fiber Light Emission and eXtracellular Recording, or FFLEXR. In addition to optical fibers that can be attached to any silicon probe, the uses linear depth-resolved , a lightweight fiber matrix connector, a flexible multifiber ribbon cable, an optical commutator for efficient multichannel stimulation, a general-purpose patch cable, and an algorithm to manage the photovoltaic response.

Deep learning is “a ball of mud accumulating all of AI,” says Amazon VP and distinguished scientist Nikko Ström. Integrating symbolic reasoning and learning eff… See more.


Integrating symbolic reasoning and learning efficiently from interactions with the world are two major remaining challenges, says vice president and distinguished scientist Nikko Ström.

Yesterday, LHCb submitted for publication new results of matter-antimatter oscillations using decays of charm particles, significantly improving the current experimental knowledge!

Read our news: https://lhcb-outreach.web.cern.ch/2022/02/21/high-precision-…ht-mesons/


Today, the LHCb Collaboration submitted for publication a paper that reports the results of the high precision measurement of the charm oscillation (mixing) parameter yCP – yCP using two body D0 meson decays. The result is more precise than the current world average value by a factor of four.

The neutral meson particle-antiparticle systems, Bs0−Bs0, B0–B0, D0–D0 and K0–K0 oscillate (transform into their antiparticle and back) with very different frequencies. The Bs0−Bs0 oscillations are the fastest, about 3 million million times per second (3×1012). The oscillations B0–B0 are about 37 times slower while the oscillations D0–D0 are even slower; the oscillation period is over one hundred times larger than the average lifetime of a D0 meson. Therefore only very few D0 mesons have the time to oscillate before decaying.