Toggle light / dark theme

What happens to information after it has passed beyond the event horizon of a black hole? There have been suggestions that the geometry of wormholes might help us solve this vexing problem – but the math has been tricky, to say the least.

In a new paper, an international team of physicists has found a workaround for better understanding how a collapsing black hole can avoid breaking the fundamental laws of quantum physics (more on that in a bit).

Although highly theoretical, the work suggests there are likely things we are missing in the quest to resolve general relativity with quantum mechanics.

Superconductors—metals in which electricity flows without resistance—hold promise as the defining material of the near future, according to physicist Brad Ramshaw, and are already used in medical imaging machines, drug discovery research and quantum computers being built by Google and IBM.

However, the super-low temperatures need to function—a few degrees above absolute zero—make them too expensive for wide use.

In their quest to find more useful superconductors, Ramshaw, the Dick & Dale Reis Johnson Assistant Professor of physics in the College of Arts and Sciences (A&S), and colleagues have discovered that magnetism is key to understanding the behavior of electrons in “high-temperature” superconductors. With this finding, they’ve solved a 30-year-old mystery surrounding this class of superconductors, which function at much higher temperatures, greater than 100 degrees above absolute zero. Their paper, “Fermi Surface Transformation at the Pseudogap Critical Point of a Cuprate Superconductor,” published in Nature Physics March 10.

What does this actually mean in concrete terms? And is it an accurate description of Russia’s nuclear doctrine?

By Mark Episkopos

The recent round of tensions in the consistently difficult relationship between Russia and the U.S. has prompted a renewed focus on the Kremlin’s nuclear posture. For years, Western analysts have posited that Moscow adheres to what is often called an “escalate to de-escalate” approach. But what does this mean in concrete policy terms, and is it an accurate description of Russia’s nuclear doctrine?