Using generative artificial intelligence, a team of researchers at The University of Texas at Austin has converted sounds from audio recordings into street-view images. The visual accuracy of these generated images demonstrates that machines can replicate human connection between audio and visual perception of environments. The research team describes training a soundscape-to-image AI model using audio and visual data gathered from a variety of urban and rural streetscapes and then using that model to generate images from audio recordings.
Researchers at the University of Chicago have developed a new method for enhancing quantum information systems by integrating trapped atom arrays with photonic devices.
This innovation allows for scalable quantum computing and networking by overcoming previous technological incompatibilities. The design features a semi-open chip that minimizes interference and enhances atom connectivity, promising significant advances in computational speed and interconnectivity for larger quantum systems.
Merging technologies for enhanced quantum computing.
In a Stanford study, a two-hour interview was all it took for an AI to accurately predict people’s responses to a barrage of questions.
From a handheld soldering gun to the ‘playbird mansion’ and, of course, the marvel of a smartphone microscope, there are some gadgets that we come across that we instantly want – and this wireless ultrasonic cutter is definitely another.
And much like the soldering gun, this little jigger has such a broad range of applications that, while it’s aimed at the do-it-yourself maker and crafter, its appeal is certainly not limited to this.
The Hanboost C1 wireless ultrasonic cutter can precisely slice through a vast array of materials – wood, plastics, leather, rubber, paper – silently, using 40,000 vibrations per second to make even the most fiddly jobs look easy. No tearing, no scratching or scoring, it just glides through calmly, slowly and with effortless precision.
Cold Spring Harbor Laboratory scientists developed an AI algorithm inspired by the genome’s efficiency, achieving remarkable data compression and task performance.
In a sense, each of us begins life ready for action. Many animals perform amazing feats soon after they’re born. Spiders spin webs. Whales swim. But where do these innate abilities come from? Obviously, the brain plays a key role as it contains the trillions of neural connections needed to control complex behaviors.
However, the genome has space for only a small fraction of that information. This paradox has stumped scientists for decades. Now, Cold Spring Harbor Laboratory (CSHL) Professors Anthony Zador and Alexei Koulakov have devised a potential solution using artificial intelligence.
Two satellites in Proba-3 mission expected to be launched on Wednesday in India and will work in tandem to study sun’s corona.
Some researchers propose that advancing AI to the next level will require an internal architecture that more closely mirrors the human mind. Rufin VanRullen joins Brian Greene to discuss early results from one such approach, based on the Global Workspace Theory of consciousness.
This program is part of the Big Ideas series, supported by the John Templeton Foundation.
Participant: Rufin VanRullen.
Moderator: Brian Greene.
00:00 — Introduction.
A recent study from the Centre for Genomic Regulation (CRG) in Barcelona reveals that bacteria can adapt their ribosomes when exposed to widely used antibiotics, potentially playing a role in the development of antibiotic resistance. These small changes can modify the drug-binding sites on ribosomes, reducing the effectiveness of antibiotics.
The research focused on Escherichia coli (E. coli), a usually harmless bacterium that can lead to serious infections. The team exposed E. coli to two antibiotics, streptomycin and kasugamycin.
A new study by the University of Reading on human brain evolution has found that modern humans, Neanderthals, and other recent relatives evolved larger brains much more rapidly than earlier species. This challenges previous ideas, suggesting that brain size increased gradually within each ancient human species, rather than through sudden leaps between species.
Anthropic, a leading AI model provider, has proposed a protocol and architecture for providing language models with the necessary context obtained from external systems.