Toggle light / dark theme

Data from NISAR will improve our understanding of such phenomena as earthquakes, volcanoes, and landslides, as well as damage to infrastructure.

We don’t always notice it, but much of Earth’s surface is in constant motion. Scientists have used satellites and ground-based instruments to track land movement associated with volcanoes, earthquakes, landslides, and other phenomena. But a new satellite from NASA and the Indian Space Research Organization (ISRO) aims to improve what we know and, potentially, help us prepare for and recover from natural and human-caused disasters.

The NISAR (NASA-ISRO Synthetic Aperture Radar) mission will measure the motion of nearly all of the planet’s land and ice-covered surfaces twice every 12 days. The pace of NISAR’s data collection will give researchers a fuller picture of how Earth’s surface changes over time. “This kind of regular observation allows us to look at how Earth’s surface moves across nearly the entire planet,” said Cathleen Jones, NISAR applications lead at NASA’s Jet Propulsion Laboratory in Southern California.

Generate Biomedicines is a new kind of therapeutics company—existing at the intersection of biology, machine learning, and biological engineering.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Advancements in deep-tech solutions addressing global healthcare challenges.

The landscape of healthcare is undergoing a radical transformation fueled by deep-tech innovations that tackle some of the most pressing global health challenges. Deep-tech, a term that encompasses technologies grounded in scientific research and engineering advancements, is reshaping diagnostics, treatment modalities, and healthcare delivery systems on a global scale. With increasing demands for accessible, efficient, and equitable healthcare, deep-tech solutions—such as artificial intelligence (AI), advanced robotics, nanotechnology, biotechnology, and quantum computing—are playing pivotal roles in reshaping modern medicine.

This article explores the advancements in deep-tech solutions that are addressing global healthcare challenges and provides insight into how these technologies are likely to shape the future of medicine, impacting medical professionals, patients, and healthcare systems worldwide.

The Japanese government is planning to generate some 20 gigawatts of electricity, equivalent to the output of 20 nuclear reactors, through thin and bendable perovskite solar cells in fiscal 2040.

The industry ministry plans to designate next-generation solar cells as the key to expanding renewables…


TOKYO (Kyodo) — The Japanese government is planning to generate some 20 gigawatts of electricity, equivalent to the output of 20 nuclear reactors, through thin and bendable perovskite solar cells in fiscal 2040.

Researchers at Harvard University exploited Marangoni effects to propel their tiny robots.


These bots ease tasks and help humans speed up critical work more accurately.

In this arena, researchers have explored a new way to power robots. Focusing on surface tensions, scientists have developed tiny robots that can perform industrial tasks.

Researchers from Harvard University claim that their tiny robots use the same method to float, allowing beetles to float across ponds and causing Cheerios to cluster together in a bowl.

Lupus, doctors like to say, affects no two patients the same. The disease causes the immune system to go rogue in a way that can strike virtually any organ in the body, but when and where is maddeningly elusive. One patient might have lesions on the face, likened to wolf bites by the 13th-century physician who gave lupus its name. Another patient might have kidney failure. Another, fluid around the lungs. What doctors can say to every patient, though, is that they will have lupus for the rest of their life. The origins of autoimmune diseases like it are often mysterious, and an immune system that sees the body it inhabits as an enemy will never completely relax. Lupus cannot be cured. No autoimmune disease can be cured.

Two years ago, however, a study came out of Germany that rocked all of these assumptions. Five patients with uncontrolled lupus went into complete remission after undergoing a repurposed cancer treatment called CAR-T-cell therapy, which largely wiped out their rogue immune cells. The first treated patient has had no symptoms for almost four years now. ‘We never dared to think about the cure for our disease,’ says Anca Askanase, a rheumatologist at Columbia University’s medical center who specializes in lupus. But these stunning results—remission in every patient—have fueled a new wave of optimism. More than 40 people with lupus worldwide have now undergone CAR-T-cell therapy, and most have gone into drug-free remission. It is too early to declare any of these patients cured for life, but that now seems within the realm of possibility.

From The Atlantic.