Toggle light / dark theme

Four-legged robots are nothing novel — Boston Dynamics’ Spot has been making the rounds for some time, as have countless alternative open source designs. But with theirs, researchers at MIT claim to have broken the record for the fastest robot run recorded. Working out of MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), the team says that they developed a system that allows the MIT-designed Mini Cheetah to learn to run by trial and error in simulation.

While the speedy Mini Cheetah has limited direct applications in the enterprise, the researchers believe that their technique could be used to improve the capabilities of other robotics systems — including those used in factories to assemble products before they’re shipped to customers. It’s timely work as the pandemic accelerates the adoption of autonomous robots in industry. According to an Automation World survey, 44.9% of the assembly and manufacturing facilities that currently use robots consider the robots to be an integral part of their operations.

Today’s cutting-edge robots are “taught” to perform tasks through reinforcement learning, a type of machine learning technique that enables robots to learn by trial and error using feedback from their own actions and experiences. When a robot performs a “right” action — i.e., an action that’ll lead it toward a desired goal, like stowing an object on a shelf — it receives a “reward.” When it makes a mistake, the robot either doesn’t receive a reward or is “punished” by losing a previous reward. Over time, the robot discovers ways to maximize its reward and perform actions that achieve the sought-after goal.

Ever since last year’s annual American Association of Cancer Research (AACR) meeting, Volastra’s phone has been “ringing off the hook,” according to CEO Charles Hugh-Jones, M.D. | Two years since its inception, Volastra Therapeutics is partnering with Bristol Myers Squibb for up to three oncology targets focused on chromosomal instability, a deal that could exceed $1.1 billion should the assets hit milestones.

The researchers simulated the molecules H4, molecular nitrogen, and solid diamond. These involved as many as 120 orbitals, the patterns of electron density formed in atoms or molecules by one or more electrons. These are the largest chemistry simulations performed to date with the help of quantum computers.

A classical computer actually handles most of this fermionic quantum Monte Carlo simulation. The quantum computer steps in during the last, most computationally complex step—calculating the differences between the estimates of the ground state made by the quantum computer and the classical computer.

The prior record for chemical simulations with quantum computing employed 12 qubits and a kind of hybrid algorithm known as a variational quantum eigensolver (VQE). However, VQEs possess a number of limitations compared with this new hybrid approach. For example, when one wants a very precise answer from a VQE, even a small amount of noise in the quantum circuitry “can cause enough of an error in our estimate of the energy or other properties that’s too large,” says study coauthor William Huggins, a quantum physicist at Google Quantum AI in Mountain View, Calif.

Treating brain diseases is also always difficult because of something called the “blood-brain barrier.” This wall of cells is designed to prevent toxins and pathogens from getting from the blood into the brain — but it also makes it hard to get treatments into the brain.

People with the Icelandic mutation are five times more likely to reach their 85 birthday without an Alzheimer’s diagnosis.

The Icelandic variant: Scientists have identified a couple of differences between the brains of people with Alzheimer’s and those of healthy people.

Ridddle!
We are a smart and educated community of over 10 million subscribers worldwide. We can’t stand aside! $1 from each of you is $10 million to help Ukraine stand and fight back the evil. You can help stop the Russian invasion into an independent European country. Millions of civilians are now hiding in bomb shelters while their homes are being destroyed by Putin.
Act now!
Support Ukraine.

https://bank.gov.ua/en/news/all/natsionalniy-bank-vidkriv-sp…ebi-armiyi

The smartest Scientists of both China and the United States are working hard on creating the fastest hardware for future Supercomputers in the exaflop and zettaflop performance range. Companies such as Intel, Nvidia and AMD are continuing Moore’s Law with the help of amazing new processes by TSMC. These supercomputers are secret projects by the government in hopes of beating each other in the tech industry and to prepare for Artificial Intelligence.

TIMESTAMPS:
00:00 A new Superpower in the making.
00:46 A Brain-Scale Supercomputer?
02:47 China Tech vs USA Tech.
05:30 Chinese Semiconductor Technology.
07:39 Last Words.

#china #computing #usa