Menu

Blog

Page 5347

Sep 3, 2021

Researchers use gold film to enhance quantum sensing with qubits in a 2D material

Posted by in categories: biological, engineering, quantum physics

Quantum sensing is being used to outpace modern sensing processes by applying quantum mechanics to design and engineering. These optimized processes will help beat the current limits in processes like studying magnetic materials or studying biological samples. In short, quantum is the next frontier in sensing technology.

As recently as 2,019 spin defects known as qubits were discovered in 2D materials (hexagonal boron nitride) which could amplify the field of ultrathin . These scientists hit a snag in their discovery which has unleashed a scientific race to resolve the issues. Their sensitivity was limited by their low brightness and the low contrast of their magnetic resonance signal. As recently as two weeks ago on August 9 2021, Nature Physics published an article titled “quantum sensors go flat,” where they highlighted the benefits and also outlined current shortfalls of this new and exciting means of sensing via qubits in 2D materials.

A team of researchers at Purdue took on this challenge of overcoming qubit signal shortcomings in their work to develop ultrathin quantum sensors with 2D materials. Their publication in Nano Letters was published today, September 2 2021, and they have solved some of the critical issues and yielded much better results through experimentation.

Sep 3, 2021

Researchers use organic semiconductor nanotubes to create new electrochemical actuator

Posted by in categories: biotech/medical, chemistry, nanotechnology, robotics/AI

University of Houston researchers are reporting a breakthrough in the field of materials science and engineering with the development of an electrochemical actuator that uses specialized organic semiconductor nanotubes (OSNTs).

Currently in the early stages of development, the actuator will become a key part of research contributing to the future of robotic, bioelectronic and .

“Electrochemical devices that transform to mechanical energy have potential use in numerous applications, ranging from soft robotics and micropumps to autofocus microlenses and bioelectronics,” said Mohammad Reza Abidian, associate professor of biomedical engineering in the UH Cullen College of Engineering. He’s the corresponding author of the article “Organic Semiconductor Nanotubes for Electrochemical Devices,” published in the journal Advanced Functional Materials, which details the discovery.

Sep 3, 2021

Graphene made with lasers for wearable health devices

Posted by in categories: health, particle physics, wearables

Graphene, hexagonally arranged carbon atoms in a single layer with superior pliability and high conductivity, could advance flexible electronics according to a Penn State-led international research team. Huanyu “Larry” Cheng, Dorothy Quiggle Career Development Professor in Penn State’s Department of Engineering Science and Mechanics (ESM), heads the collaboration, which recently published two studies that could inform research and development of future motion detection, tactile sensing and health monitoring devices.

Investigating how laser processing affects graphene form and function

Several substances can be converted into carbon to create graphene through . Called laser-induced graphene (LIG), the resulting product can have specific properties determined by the original material. The team tested this process and published their results in SCIENCE CHINA Technological Sciences.

Sep 3, 2021

NASA Is Designing a Swarm of ‘Hive Mind’ Weather Satellites

Posted by in categories: robotics/AI, satellites

Because now more than ever we need to know the weather.


NASA is working on a new machine learning software that could revolutionize our understanding of weather patterns.

Continue reading “NASA Is Designing a Swarm of ‘Hive Mind’ Weather Satellites” »

Sep 3, 2021

COVID-19: Monoclonal antibody combo reduces hospitalization

Posted by in category: biotech/medical

A large Mayo Clinic study finds that treating COVID-19 patients with two monoclonal antibodies — casirivimab and imdevimab — can help avoid hospitalization.

Sep 3, 2021

A new kind of supernova makes weird black holes

Posted by in category: cosmology

Scientists observed a new kind of supernova: the early death of a massive star triggered when it eats its companion.


Scientists have observed a new kind of supernova, the early death of a massive star trriggered when it eats its companion.

Sep 3, 2021

Astronomers Discover a Strangely Shaped Spot on the Surface of a Baby Star 450 Million Light-Years Away

Posted by in category: alien life

Astronomers have discovered a strangely shaped spot on the surface of a baby star 450 million light-years away, revealing new insights into how our solar system formed.

The familiar star at the center of our solar system has had billions of years to mature and ultimately provide life-giving energy to us here on Earth. But a very long time ago, our sun was just a growing baby star. What did the sun look like when it was so young? That’s long been a mystery that, if solved, could teach us about the formation of our solar system—so-named because sol is the Latin word for sun—and other stellar systems made up of planets and cosmic objects orbiting stars.

“We’ve detected thousands of planets in other stellar systems in our galaxy, but where did all of these planets come from? Where did Earth come from? That’s what really drives me,” says Catherine Espaillat, lead author on the paper and a Boston University College of Arts & Sciences associate professor of astronomy.

Sep 3, 2021

Unraveling quantum interactions of 100,000 atoms in gases

Posted by in categories: computing, particle physics, quantum physics

Silvia Musolino defended her Ph.D. on new theoretical insights in quantum physics by studying gases at the lowest temperatures consisting of many atoms.

A practical way to study is provided by gases that have extremely low density and consist of many , often more than one hundred thousand, cooled down to temperatures close to the absolute zero. Silvia Musolino studied different types of interactions between these atoms, providing new pathways for future research on new technologies such as quantum computers.

Quantum mechanical laws govern the physics at the atomic scale and is distinguished by , which deals mainly with we can see, hear, or touch. However, even quantum mechanics influences our daily life. Transistors, which are crucial components of electronic devices, are based on quantum mechanical effects. Moreover, quantum mechanics paves the way for new technologies that may strongly impact our lives, such as quantum computers.

Sep 3, 2021

Dense ‘hot spots’ on a young star reveal what Earth’s sun may have looked in its infancy

Posted by in categories: materials, space

Astronomers may have captured the best view yet of matter colliding with the surface of a young star, findings that may shed light on what the sun looked like in its youth.

Newborn stars are surrounded by a disk of gas and dust from which planets, asteroids, comets and moons are born. The star’s magnetic field connects the star with this protoplanetary disk, “funneling material from the disk onto the star,” study lead author Catherine Espaillat, an astrophysicist at Boston University, told Space.com.

Sep 3, 2021

How to Invest in the Booming Chip-Tech Industry

Posted by in category: computing

Chips power the modern world, and the global semiconductor shortage showed their impact. This graphic highlights the evolution of the chip-tech field.