Toggle light / dark theme

Pharmaceutical intervention of aging requires targeting multiple pathways, thus there is rationale to test combinations of drugs targeting different but overlapping processes. In order to determine if combining drugs shown to extend lifespan and healthy aging in mice would have greater impact than any individual drug, a cocktail diet containing 14 ppm rapamycin, 1,000 ppm acarbose, and 1,000 ppm phenylbutyrate was fed to 20-month-old C57BL/6 and HET3 4-way cross mice of both sexes for three months. Mice treated with the cocktail showed a sex and strain-dependent phenotype consistent with healthy aging including decreased body fat, improved cognition, increased strength and endurance, and decreased age-related pathology compared to mice treated with individual drugs or control. The severity of age-related lesions in heart, lungs, liver, and kidney was consistently decreased in mice treated with the cocktail compared to mice treated with individual drugs or control, suggesting an interactive advantage of the three drugs. This study shows that a combination of three drugs, each previously shown to enhance lifespan and health span in mice, is able to delay aging phenotypes in middle-aged mice more effectively than any individual drug in the cocktail over a 3-month treatment period.

© 2022. The Author(s).

Conflict of interest statement.

A technological demonstration from China recently presented the power of super drones that track objects and people with high precision. The remote-powered vehicles, developed by scholars from Zhejiang University, were deployed into a thick bamboo forest to test their capabilities.

A video released by the researchers shows that the drones maneuvered effectively over the complex obstacles of the forest. The demonstration of the machines creeped out many audiences, as the precision and navigation of the drones exceeded far more than those of the technologies we see today.


Engineers from China developed what might be the most advanced drone swarm to date. Learn more about the autonomous machines and how they performed in tests.

We’ve never seen a neighboring galaxy like this before.


The Large Magellanic Cloud is sharper than ever in the infrared eyes of the James Webb Space Telescope.

As the $10 billion observatory enters the “homestretch” of its commissioning work, according to officials, Webb’s latest image showed off the telescope’s literally stellar performance using its coldest instrument, the Mid-Infrared Instrument (MIRI).

Astronomers have revealed the trails of nearly 1,500 new asteroids hidden in data gathered by NASA’s most venerable space telescope.

In a new study, astronomers and a team of amateur scientists have worked together to comb through archival data from the Hubble Space Telescope. The project began on International Asteroid Day in 2019, when a team of astronomers launched the “Hubble Asteroid Hunter” project on Zooniverse, a popular platform for crowdsourcing science. The project’s aim was to identify asteroids in old data from Hubble; signals that, in other studies, might have just been filtered out as noise.

A vast reservoir of ancient water has been found thousands of feet under the ice in western Antarctica, scientists said in a paper published Thursday in the journal Science.

Researchers had long suspected but never before established the existence of such hidden pockets of Antarctic groundwater, which they believe act to lessen friction between ice sheets and underlying bedrock to make the ice more prone to slide from the continent’s interior toward the surrounding ocean.

Time will tell if more effective strategies can be developed to manage space junk in the future. But, as you are about to find out, we may not want to clear up space entirely.

Some of these “dead” spacecraft may still function!

1. Voyager 1 and 2 are still going strong.

Perhaps the most famous example of old spacecraft still in use today are Voyager 1 and 2. By far the farthest-traveled human-made objects ever sent into space, these amazing pieces of kit are still faithfully sending data back to Earth.

The latest “machine scientist” algorithms can take in data on dark matter, dividing cells, turbulence, and other situations too complicated for humans to understand and provide an equation capturing the essence of what’s going on.


Despite rediscovering Kepler’s third law and other textbook classics, BACON remained something of a curiosity in an era of limited computing power. Researchers still had to analyze most data sets by hand, or eventually with Excel-like software that found the best fit for a simple data set when given a specific class of equation. The notion that an algorithm could find the correct model for describing any data set lay dormant until 2009, when Lipson and Michael Schmidt, roboticists then at Cornell University, developed an algorithm called Eureqa.

Their main goal had been to build a machine that could boil down expansive data sets with column after column of variables to an equation involving the few variables that actually matter. “The equation might end up having four variables, but you don’t know in advance which ones,” Lipson said. “You throw at it everything and the kitchen sink. Maybe the weather is important. Maybe the number of dentists per square mile is important.”

One persistent hurdle to wrangling numerous variables has been finding an efficient way to guess new equations over and over. Researchers say you also need the flexibility to try out (and recover from) potential dead ends. When the algorithm can jump from a line to a parabola, or add a sinusoidal ripple, its ability to hit as many data points as possible might get worse before it gets better. To overcome this and other challenges, in 1992 the computer scientist John Koza proposed “genetic algorithms,” which introduce random “mutations” into equations and test the mutant equations against the data. Over many trials, initially useless features either evolve potent functionality or wither away.