Toggle light / dark theme

The brain is the central information center and constantly monitors the state of every organ present in a body. Previous research has shown that the brain also receives signals from the gut microbiota.

In a new Immunity journal study, researchers discuss the work of Gabanyi et al. (2022), published in a recent issue of Science, which reveals that hypothalamic gamma-aminobutyric acid (GABAergic) neurons recognize microbial muropeptides through the cytosolic receptor NOD2, which regulates food intake and body temperature.

The world’s most-cited researcher in visual question-answering, Anton van den Hengel, is also Amazon’s director of applied science. Learn how his journey to computer vision started with law—and how his work is supporting Amazon’s business through the development and application of state-of-the-art computer vision and scalable machine learning.

#ComputerVision #CVPR2022


Amazon’s director of applied science in Adelaide, Australia, believes the economic value of computer vision has “gone through the roof”.

High Dynamic Range Zuckerberg said that of the four key challenges he and Abbrash overviewed “the most important of these all is HDR.” To prove out the impact of HDR on the VR experience, the Display Systems Research team built another prototype, appropriately called Starburst. According to Meta it’s the first VR headset prototype (‘as 


SPACE weather experts are keeping a close eye on an “enormous sunspot” that’s doubled in size in the past 24 hours.

The unstable patch on the solar surface is directly facing Earth so if it bursts it could fling solar flares our way.

A solar flare isn’t expected to hit yet but it could be possible if the sunspot continues to grow and behave in an unstable manner.

With a more sustainable world goal, MIT researchers have succeeded in developing a new LEGO-like AI chip. Imagine a world where cellphones, smartwatches, and other wearable technologies don’t have to be put away or discarded for a new model. Instead, they could be upgraded with the newest sensors and processors that would snap into a device’s internal chip – similar to how LEGO bricks can be incorporated into an existing structure. Such reconfigurable chips might keep devices current while lowering electronic waste. This is really important because green computing is the key to a sustainable future.

MIT engineers have developed a stackable, reprogrammable LEGO-like AI chip. The chip’s layers communicate thanks optically to alternating layers of sensing and processing components, as well as light-emitting diodes (LEDs). Other modular chip designs use conventional wiring to transmit signals between layers. Such intricate connections are difficult, if not impossible, to cut and rewire, making stackable configurations nonreconfigurable.

Rather than relying on physical wires, the MIT design uses light to transfer data across the AI chip. As a result, the chip’s layers may be swapped out or added upon, for example, to include extra sensors or more powerful processors.