Menu

Blog

Page 4

Dec 6, 2024

Learn Quantum Physics More Easily With This Breakthrough Approach

Posted by in categories: education, quantum physics

A team of physics educators from Italy, Hungary, Slovenia, and Germany is pioneering a new approach to teaching quantum physics in schools. Traditional classroom methods have typically emphasized the history and origins of quantum physics, which can often create challenges for learners.

The researchers, including physics education specialist Professor Philipp Bitzenbauer from Leipzig University, focus on qubits—two-state systems that are both the simplest and most crucial quantum systems, capable of describing many situations. Mastering the control and manipulation of these qubits is fundamental to advancing modern quantum technologies.

According to Bitzenbauer, until now there have been no empirical studies of the effectiveness of these approaches using two-state systems in developing conceptual understanding in learners. There is also a lack of scientific research on the specific advantages and disadvantages for learning of different teaching approaches based on two-state systems.

Dec 6, 2024

Spatial transcriptomic analysis toolkit can extract biological relationships to better investigate cellular processes

Posted by in categories: biotech/medical, computing

In a recent study published in Nature Communications, a team of researchers at the Carl R. Woese Institute for Genomic Biology reports a new, robust computational toolset to extract biological relationships from large transcriptomics datasets. These efforts will help scientists better investigate cellular processes.

Living organisms are governed by their genome—an instruction manual written in the language of DNA that dictates how an organism grows, survives, and reproduces. By regulating the abundance of different RNA transcripts, cells control their protein expression level, thereby shaping their functions and responses to the environment.

Transcriptomics is the study of gene expression through cataloging the presence and abundance levels of active RNA transcripts generated from the genome under different conditions. Through the lens of RNA, transcriptomics technologies allow scientists to study the that enable life and cause disease, as well as assess the biological effects of therapeutics.

Dec 6, 2024

#Biosensors

Posted by in categories: biotech/medical, innovation

Unlocking Real-Time Inflammation Monitoring with Active-Reset Protein Sensors.

Imagine a tiny device that could continuously monitor your body’s inflammation levels, offering insights in real time to help manage diseases. While sensors for small molecules like glucose have existed for years, tracking proteins—a critical component in understanding inflammation—has been a major challenge. Proteins are present at much lower levels in the body, and traditional sensors struggle with slow response times due to their high-affinity binding to these molecules.

A team led by Zargartalebi has now overcome this barrier by introducing active-reset protein sensors. These sensors employ high-frequency oscillations of positive voltage to rapidly release bound protein molecules from their sensing electrodes. This breakthrough allows the sensors to reset in under a minute, enabling continuous tracking of protein levels.

Continue reading “#Biosensors” »

Dec 6, 2024

A tapeworm-inspired, tissue-anchoring mechanism for medical devices

Posted by in categories: biotech/medical, materials

Ingestible devices are often used to study and treat hard-to-reach tissues in the body. Swallowed in pill form, these capsules can pass through the digestive tract, snapping photos or delivering drugs.

While in their simplest form, these devices are passively transported through the gut, there are a wide range of applications where you may want a device to attach to the tissue or other flexible materials. A rich history of biologically inspired solutions exist to address this need, ranging from cocklebur-inspired Velcro to slug-inspired medical adhesives, but the creation of on-demand and reversible attachment mechanisms that can be incorporated into millimeter-scale devices for biomedical sensing and diagnostics remains a challenge.

A new interdisciplinary effort led by Robert Wood, the Harry Lewis and Marlyn McGrath Professor of Engineering and Applied Sciences in the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), and James Weaver, of Harvard’s Wyss Institute, has drawn inspiration from an unexpected source: the world of parasites.

Dec 6, 2024

Recent Advances in Wolbachia and Spiroplasma Symbiosis

Posted by in category: genetics

Dear Colleagues.

A good number of insect pests are known for harboring various bacterial symbionts. Herbivore-associated bacterial symbionts such as Wolbachia and Spiroplasma are widespread in diverse arthropods and mostly act as reproductive parasites. Both have been reported to significantly improve reproductive performance of various insects, including spider mites, aphids, Drosophila, etc. These insect-associated symbionts influence herbivore fitness, growth, and development, as well as interfere with plant defenses by changing plant physiology. Both Wolbachia and Spiroplasma are maternally inherited endosymbionts in arthropods and are able to co-exist and infect the same host. Understanding these complex interactions is very important for the development of an effective insect pest management program. We look forward to receiving your contributions to this Special Issue in the form of original research papers and review articles focusing on, but not limited to, the latest research on the occurrence, genetic diversity, and physiological functions of Wolbachia and/or Spiroplasma symbionts in various primary hosts. Although our focus will be on these two major facultative insect symbionts, articles reporting work carried out on other bacterial species are also welcome.

Dec 6, 2024

Gene Therapy Protects Rats From Motor Neuron Disease

Posted by in categories: biotech/medical, neuroscience

UW–Madison researchers used gene therapy to prevent hereditary spastic paraplegia (HSP) in a rat model, introducing a healthy version of the Trk-fused gene to compensate for the mutated one. This prevented the onset of HSP symptoms in rats.

Dec 6, 2024

Why tiny viruses could be our best bet against antimicrobial resistance

Posted by in category: futurism

Phages—tiny entities that infect bacteria—were discovered over 100 years ago but were largely abandoned as therapies. Now they’re making a comeback.

Dec 6, 2024

Protein engineering research reveals the mysteries of life, enabling advances in pharmaceuticals

Posted by in categories: bioengineering, biotech/medical, chemistry, food, health

Proteins are so much more than nutrients in food. Virtually every reaction in the body that makes life possible involves this large group of molecules. And when things go wrong in our health, proteins are usually part of the problem.

In certain types of heart disease, for instance, the proteins in cardiac tissue, seen with , are visibly disordered. Alex Dunn, professor of chemical engineering, describes proteins like the beams of a house: “We can see that in unhealthy heart muscle cells, all of those beams are out of place.”

Proteins are the workhorses of the cell, making the biochemical processes of life possible. These workhorses include enzymes, which bind to other molecules to speed up reactions, and antibodies that attach to viruses and prevent them from infecting cells.

Dec 6, 2024

Sandia labs boosts geothermal drilling with advanced diamond bits

Posted by in category: energy

Sandia Labs reveals top drill bits for optimized geothermal drilling.


Learn how Sandia Labs identifies superior drill bits to revolutionize geothermal energy extraction and lower operational costs.

Dec 6, 2024

Prof. Carlos Duarte, Ph.D. — Executive Director, Coral Research & Development Accelerator Platform

Posted by in categories: bioengineering, biological, climatology, sustainability

Professor Carlos Duarte, Ph.D. is Distinguished Professor, Marine Science, and Executive Director, Coral Research \& Development Accelerator Platform (CORDAP — https://cordap.org/), Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST — https://www.kaust.edu.sa/en/study/fac…), in Saudi Arabia, as well as Chief Scientist of Oceans2050, OceanUS, and E1Series.

Prior to these roles Professor Duarte was Research Professor with the Spanish National Research Council (CSIC) and Director of the Oceans Institute at The University of Western Australia. He also holds honorary positions at the Arctic Research Center in Aarhus University, Denmark and the Oceans Institute at The University of Western Australia.

Continue reading “Prof. Carlos Duarte, Ph.D. — Executive Director, Coral Research & Development Accelerator Platform” »

Page 4 of 12,11912345678Last