Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

The Physics of Belief: Placebo Effects as Quantum Psychosomatics and the Material Reality of Meaning

Read “” by Myk Eff on Medium.


When a patient in a clinical trial experiences genuine pain relief from an inert sugar pill, something remarkable occurs that contemporary medicine awkwardly labels the placebo effect — a term that simultaneously acknowledges the phenomenon while dismissing it as mere illusion. Yet what if this dismissal represents not scientific rigor but ontological timidity? What if the placebo effect, rather than being a confounding variable to be controlled away, is actually nature’s clearest demonstration of a quantum interface between consciousness and physiology, hiding in plain sight within the very architecture of our clinical trials? The question is not whether belief heals, but what belief actually is when we take seriously the contemporary understanding that information itself possesses physical reality.

The empirical robustness of placebo effects has become impossible to ignore. In their comprehensive meta-analysis published in The Lancet, Hróbjartsson and Gøtzsche (2001) examined 114 clinical trials and found that while placebo effects vary considerably across conditions, they demonstrate genuine clinical significance in pain reduction, with effect sizes rivaling those of established pharmaceutical interventions. More provocatively, Benedetti’s research on placebo analgesia has revealed that the effect operates through identifiable neurochemical pathways — placebo-induced pain relief can be blocked by naloxone, an opioid antagonist, demonstrating that the patient’s belief literally triggers the release of endogenous opioids (Benedetti, Mayberg, Wager, Stohler, & Zubieta, 2005). This is not imagination overriding reality; this is imagination as a physical force, translating expectation into molecular cascade.

Yet the standard neurobiological explanation, while accurate, remains curiously incomplete. Yes, belief activates specific neural circuits; yes, these circuits trigger biochemical responses; yes, measurable physiological changes occur. But this mechanistic account merely pushes the mystery one level deeper. How does the abstract informational content of a belief — the semantic meaning this pill will relieve my pain — couple to the physical substrate of neurons and neurotransmitters? The conventional answer invokes learning, conditioning, and expectation, but these terms describe the phenomenon without explaining the fundamental ontological transition from meaning to matter, from information to effect.

Toxin Stops Colon Cancer Growth, Without Harming Healthy Tissue

Researchers in Sweden have identified an unexpected biological mechanism that could influence future cancer treatments. Scientists in Sweden have uncovered an unexpected anti-cancer effect from a molecule produced by the bacteria responsible for cholera. In a new study from Umeå University, resea

A world-first mouse that makes gene activity visible

DNA can be thought of as a vast library that stores all genetic information. Cells do not use this information all at once. Instead, they copy only the necessary parts into RNA, which is then used to produce proteins—the essential building blocks of life. This copying process is called transcription, and it is carried out by a molecule known as RNA polymerase II.

When RNA polymerase II begins actively transcribing DNA, a specific site called Ser2 on its tail region is marked with a small chemical group known as a phosphate. This phosphate acts as a sign that transcription is in progress. Until now, observing this sign required stopping cellular activity and chemically treating the cells to visualize the phosphate. As a result, it was impossible to see how transcription changes dynamically in living cells.

To overcome this limitation, a research team led by Professor Hiroshi Kimura at Institute of Science Tokyo (Science Tokyo) chose a different approach. Instead of freezing cells at a single moment, they aimed to track transcription continuously without stopping cellular activity.

Unlocking defect-free graphene electrodes for transparent electronics

Transparent electrodes transmit light while conducting electricity and are increasingly important in bioelectronic and optoelectronic devices. Their combination of high optical transparency, low electrical resistance, and mechanical flexibility makes them well suited for applications such as displays, solar cells, and wearable or implantable technologies.

In a significant advancement, researchers led by Professor Wonsuk Jung at Chungnam National University in the Republic of Korea have introduced a new fabrication technique called one-step free patterning of graphene, or OFP-G, which enables high-resolution patterning of large-area monolayer graphene with feature sizes smaller than 5 micrometers, without the use of photoresists or chemical etching.

Published Microsystems & Nanoengineering, the method addresses a key limitation of conventional microelectrode fabrication, where lithographic processes often damage graphene and degrade its electrical performance.

A Common Sleeping Pill May Reduce Buildup of Alzheimer’s Proteins, Study Reveals

There’s still so much we don’t know about Alzheimer’s disease, but the link between poor sleep and worsening disease is one that researchers are exploring with gusto.

A study published in 2023 found that using sleeping pills to get some shut-eye could reduce the buildup of toxic clumps of proteins in fluid that washes the brain clean every night.

People who took suvorexant, a common treatment for insomnia, for two nights at a sleep clinic experienced a slight drop in amyloid-beta and tau, two proteins that pile up in Alzheimer’s disease.

Engineering a Mechanoresponsive DNA Origami Capsule for Drug Delivery to Narrowed ArteriesClick to copy article linkArticle link copied!

Omer et al. design a DNA origami box with a lid held closed by an elastic single-stranded DNA spring. The box may selectively open in blood vessels with pathological levels of shear flow, facilitating drug delivery to sites of thrombosis while minimizing off-target toxicity. It should be noted that this paper focused entirely on the box’s design and mechanical validation (via optical tweezers) and did not perform any experiments to show drug delivery. Nonetheless, this is a good start and I’m glad to see people thinking about DNA origami for therapeutic applications. [ https://pubs.acs.org/doi/10.1021/acs.nanolett.5c04066](https://pubs.acs.org/doi/10.1021/acs.nanolett.5c04066)


Click to copy section linkSection link copied!

Once Thought To Support Neurons, Astrocytes Turn Out To Be in Charge

Misha Ahrens’ team at Janelia Research Campus placed zebra fish in virtual reality where swimming produced no progress. Normally, fish give up after ~20 seconds. The researchers found astrocytes were “counting” swim attempts via accumulating calcium. When calcium reached a threshold, astrocytes released adenosine to suppress swimming circuits. When researchers disabled astrocytes with a laser, the fish never stopped swimming; when they artificially activated astrocytes, the fish stopped immediately. This showed astrocytes actively mediate the transition from hope to hopelessness.

Marc Freeman’s lab showed norepinephrine doesn’t just activate astrocytes—it changes their “hearing.” At low norepinephrine (low arousal), astrocytes ignore synaptic activity. At high norepinephrine (high arousal), astrocytes suddenly “listen” to every synapse and modulate neuronal response accordingly. This creates a dynamic gain control system layered atop neuronal networks.


“We did expect that, in large part, the effect of norepinephrine on synapses would be mediated by astrocytes,” Papouin said. “But we did not expect all of it to be!”

The finding of parallel molecular pathways in such distinct species as fruit flies, zebra fish, and mice points to “an evolutionarily conserved way in which astrocytes can profoundly affect neural circuits,” Freeman said.

The results suggest a gaping hole in previous theories of neuromodulation. “In the past, neuroscientists studied neuromodulators and knew they were important in regulating neural circuit function, but none of their thinking, none of their diagrams, none of their models had anything in them other than neurons,” Fields said. “Now we see that they missed a big part of the story.”

/* */