Menu

Blog

Page 4

Aug 10, 2024

Are Humans the First Civilization? The Silurian Hypothesis

Posted by in categories: food, habitats

Hey, I have a nice story for you. During my childhood, I used to live in Italy. We would eat pasta every day and life was simple. I loved my house, but one d…

Aug 10, 2024

The next world’s tallest building could be a 3,000-feet-high battery

Posted by in category: energy

SOM, the architecture firm behind some of the world’s tallest buildings, is working to develop gravity energy storage solutions for skyscrapers and other buildings.

Aug 10, 2024

Helen Edwards Helped Create a Particle Smasher to Probe the Mysteries of Atoms

Posted by in category: particle physics

Helen Edwards was a particle physicist who led the design and construction of the Tevatron, a machine built to probe deeper into the atom than anyone had gone before.

Aug 10, 2024

The future of data centers — on land, at sea, and in space

Posted by in categories: business, computing, space

Data centers are facilities that house the computing hardware used to process and store data. While some businesses maintain their own data centers on site, many others rely on ones owned and operated by someone else.

As our digital world continues to grow, demand for data centers — and clean electricity to operate them — is also increasing. To find out how we’ll be able to keep up, let’s look at the history of data centers, the challenges facing them, and ideas for overcoming those issues — on land, at sea, and in space.

Aug 10, 2024

PhAI—an AI system that figures out the phase of x-rays that crystals have diffracted

Posted by in category: robotics/AI

A trio of chemists at the University of Copenhagen has developed an AI application that can be used to figure out the phase of x-rays that crystals have diffracted as part of efforts to predict the structure of small molecules.

Aug 10, 2024

Researchers discover new material for optically-controlled magnetic memory

Posted by in categories: computing, engineering

Researchers at the University of Chicago Pritzker School of Molecular Engineering (PME) have made unexpected progress toward developing a new optical memory that can quickly and energy-efficiently store and access computational data. While studying a complex material composed of manganese, bismuth and tellurium (MnBi2Te4), the researchers realized that the material’s magnetic properties changed quickly and easily in response to light. This means that a laser could be used to encode information within the magnetic states of MnBi2Te4.

Aug 10, 2024

Achieving quantum memory in the notoriously difficult X-ray range

Posted by in categories: computing, quantum physics

Light is an excellent carrier of information used not only for classical communication technologies but also increasingly for quantum applications such as quantum networking and computing. However, processing light signals is far more complex, compared to working with common electronic signals.

Aug 10, 2024

Ability to track nanoscale flow in soft matter could prove pivotal discovery

Posted by in categories: food, nanotechnology

For roughly 70 years, Play-Doh has been entertaining children with its moldable, squishy form. This familiar substance belongs to a broader category known as soft matter, which includes some foods (such as mayonnaise), 3D printer gels, battery electrolytes and latex paint.

Aug 10, 2024

Quantum computing: Finding solutions by the people for the people

Posted by in categories: computing, quantum physics

PEARC24 launched its first Workshop on Broadly Accessible Quantum Computing (QC) as the full conference began, July 22, in Providence, RI. Led by NCSA’s Bruno Abreu and QuEra’s Tomasso Macri, 30+ participants included quantum chemists, system administrators, software developers, research computing facilitators, students and others looking to better understand the current status and the prospects of QC and its applications.

Aug 10, 2024

A Simpler Path to Fusion: The Promise of Spherical Tokamak Technology

Posted by in categories: nuclear energy, particle physics, space

Some experts believe that the future of fusion in the U.S. may be found in compact, spherical fusion vessels. A smaller tokamak is seen as a potentially more economical solution for fusion energy. The challenge lies in fitting all necessary components into a limited space. Recent research indicates that removing one key component used to heat the plasma could create the additional space required.

Scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), the private company Tokamak Energy, and Kyushu University in Japan have proposed a design for a compact, spherical fusion pilot plant that heats the plasma using only microwaves. Typically, spherical tokamaks also use a massive coil of copper wire called a solenoid, located near the center of the vessel, to heat the plasma. Neutral beam injection, which involves applying beams of uncharged particles to the plasma, is often used as well. But much like a tiny kitchen is easier to design if it has fewer appliances, it would be simpler and more economical to make a compact tokamak if it has fewer heating systems.

The new approach eliminates ohmic heating, which is the same heating that happens in a toaster and is standard in tokamaks. “A compact, spherical tokamak plasma looks like a cored apple with a relatively small core, so one does not have the space for an ohmic heating coil,” said Masayuki Ono, a principal research physicist at PPPL and lead author of the paper detailing the new research. “If we don’t have to include an ohmic heating coil, we can probably design a machine that is easier and cheaper to build.”

Page 4 of 11,56812345678Last