Toggle light / dark theme

Many diseases are caused by a missing or defective copy of a single gene. For decades, scientists have been working on gene therapy treatments that could cure such diseases by delivering a new copy of the missing genes to the affected cells.

Despite those efforts, very few gene therapy treatments have been approved by the FDA. One of the challenges to developing these treatments has been achieving control over how much the new gene is expressed in cells — too little and it won’t succeed, too much and it could cause serious side effects.

To help achieve more precise control of gene therapy, MIT engineers have tuned and applied a control circuit that can keep expression levels within a target range. In human cells, they showed that they could use this method to deliver genes that could help treat diseases including fragile X syndrome, a disorder that leads to intellectual disability and other developmental problems.

A nice brief paper comparing plasmid multimer formation in different strains of bacteria and identifying conditions under which such multimer formation occurs minimally. #biotech #synbio

The quantum black hole with (almost) no equations by Professor Gerard ‘t Hooft.

How to reconcile Einstein’s theory of General Relativity with Quantum Mechanics is a notorious problem. Special relativity, on the other hand, was united completely with quantum mechanics when the Standard Model, including Higgs mechanism, was formulated as a relativistic quantum field theory.

Since Stephen Hawking shed new light on quantum mechanical effects in black holes, it was hoped that black holes may be used to obtain a more complete picture of Nature’s laws in that domain, but he arrived at claims that are difficult to use in this respect. Was he right? What happens with information sent into a black hole?

The discussion is not over; in this lecture it is shown that a mild conical singularity at the black hole horizon may be inevitable, while it doubles the temperature of quantum radiation emitted by a black hole, we illustrate the situation with only few equations.

About the Higgs Lecture.

The Faculty of Natural, Mathematical & Engineering Sciences is delighted to present the Annual Higgs Lecture. The inaugural Annual Higgs Lecture was delivered in December 2012 by its name bearer, Professor Peter Higgs, who returned to King’s after graduating in 1950 with a first-class honours degree in Physics, and who famously predicted the Higgs Boson particle.

Check out the free AMD loaner offer. Test the Ryzen PRO laptops yourself and experience the benefits they can bring to your business:
https://tinyurl.com/4zwaxnfm.

Timestamps:
00:00 — New Semiconductor.
05:53 — New Chip.
11:09 — Breakthrough Results.
16:28 — Major Fabs looking into it.

Let’s connect on LinkedIn ➜ / anastasiintech.

#AMD #RYZENPRO

Over the past several decades, human lifespan has steadily increased. However, this progress has also led to a growing proportion of the population suffering from age-related diseases such as cancer, neurodegenerative disorders, and diabetes. Extending both lifespan and healthspan, the period of life spent in good health, requires a deeper understanding of the biological mechanisms that promote healthy aging.

In the natural world, mammalian lifespans vary enormously, ranging from just 1 to 2 years in some rodents to more than a century in species.

A species is a group of living organisms that share a set of common characteristics and are able to breed and produce fertile offspring. The concept of a species is important in biology as it is used to classify and organize the diversity of life. There are different ways to define a species, but the most widely accepted one is the biological species concept, which defines a species as a group of organisms that can interbreed and produce viable offspring in nature. This definition is widely used in evolutionary biology and ecology to identify and classify living organisms.

In a critical fusion breakthrough, scientists from the international ITER nuclear fusion energy project have announced the completion of the sixth and final component of the reactor’s central solenoid, a magnet powerful enough to levitate an aircraft carrier.

Described as a “landmark achievement” by the 30-country ITER collaboration, the pulsed superconducting electromagnet and other completed components will be assembled at the group’s designated site in southern France.

“By integrating all the systems needed for fusion at industrial scale, ITER is serving as a massive, complex research laboratory for its 30-plus member countries, providing the knowledge and data needed to optimize commercial fusion power,” the group explained in a statement announcing the achievement.

Scientists have made a groundbreaking leap in detecting dark energy by developing a magnetically levitated precision force system.

Their experiments vastly surpassed previous methods, reaching a new level of precision that opens up unexplored realms of dark energy research. The work was so impactful it earned a featured highlight in Nature Astronomy.

Breakthrough in Dark Energy Detection.