Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Bridging light, microwaves and electrons for precision calibration

EPFL researchers have developed a method to calibrate electron spectrometers with extreme accuracy by linking microwave, optical, and free-electron frequencies.

Frequency is one of the most precisely measurable quantities in science. Thanks to , tools that generate a series of equally spaced, precise frequencies like the teeth of a ruler, researchers can connect frequencies across the electromagnetic spectrum, from microwaves to optical light, enabling breakthroughs in timekeeping, spectroscopy, and navigation.

Electron energy-loss spectroscopy (EELS) is a powerful tool used to investigate the structure and properties of materials at the atomic level. It works by measuring how electrons lose energy as they pass through a sample. But although EELS provides excellent spatial resolution, its spectral resolution, the ability to measure energy precisely, has lagged behind optical methods.

A faster, more affordable way to produce quantum nanodiamonds holds promise for medicine and industry

An international team of scientists from three continents led by Dr. Petr Cígler of IOCB Prague has developed a method for creating light-emitting quantum centers in nanodiamonds in only a matter of minutes. In just one week, the process can yield as much material as conventional methods would produce in more than forty years.

Moreover, the resulting nanodiamonds show improved optical and quantum properties. The breakthrough brings us one step closer to the industrial production of higher-quality and more affordable quantum nanodiamonds, which have broad applications in research and technology. The article is published in Advanced Functional Materials.

The research team has introduced a new procedure called Pressure and Temperature Qubits (PTQ), which takes only four minutes. Diamond powder is placed in a press that generates extremely and temperature, reproducing the conditions found deep within Earth’s mantle. Under these conditions, quantum centers are formed inside the nanodiamonds.

Scientists Discover Ocean Bacteria That Feast on Plastic

A newly discovered enzyme motif reveals how ocean microbes are evolving to digest plastic, potentially aiding future cleanup efforts. Hidden in the depths of the ocean, scientists have discovered marine bacteria equipped with enzymes that can consume plastic, their evolution shaped by humanity’s

This Wonder Material Could Revolutionize Renewable Energy

A team of researchers has explored how two-dimensional materials known as MXenes could revolutionize renewable energy and sustainable chemical production. Scientists searching for cleaner and more sustainable technologies are turning their attention to two-dimensional materials that could transfo

What If Einstein Was Only Half Right? NASA’s New Test for Dark Energy

New strategies may soon allow scientists to test dark energy theories within our own solar system, linking cosmic-scale physics to local observation. Science advances through a cycle of proposing theories and rigorously testing them in search of contradictions. This process is especially challeng

/* */