Toggle light / dark theme

Researchers at the Ragon Institute have made a significant discovery about how antibodies can directly enhance the body’s ability to fight Mycobacterium tuberculosis (Mtb), the bacteria responsible for tuberculosis (TB). Despite decades of research, TB remains one of the deadliest infectious diseases worldwide, with about 10 million new cases and 1.6 million deaths annually. Currently, there is no highly effective vaccine, highlighting the urgent need for new insights and treatments.

In a study published today in Immunity, Ragon faculty member Galit Alter, Ph.D. and previous post-doctoral trainee Patricia Grace, Ph.D., now at University of Pittsburgh, partnered with Bryan Bryson, Ph.D., associate member Sarah Fortune, Ph.D. and a team of collaborators, to collect the largest library of to Mycobacterium (Mtb) the bacteria that causes tuberculosis.

The team identified specific antibody features that significantly limit the growth of Mtb. This research reveals critical new insights into how antibodies interact with in the lungs to restrict Mtb infection, laying the groundwork for potential antibody-based therapies or vaccines against tuberculosis, both of which are urgently needed.

(Philadelphia, PA) – A single injection of a novel CRISPR gene-editing treatment safely and efficiently removes SIV – a virus related to the AIDS-causing agent HIV – from the genomes of non-human primates, scientists at the Lewis Katz School of Medicine at Temple University now report. The groundbreaking work complements previous experiments as the basis for the first-ever clinical trial of an HIV gene-editing technology in human patients, which was authorized by the Food and Drug Administration (FDA) in 2022.

The preclinical study, published online in the journal Gene Therapy, tested EBT-001, an SIV-specific CRISPR-Cas9 gene-editing therapy, in rhesus macaques. The study shows that EBT-001 effectively excises SIV from reservoirs – cells and tissues where viruses like SIV and HIV integrate into host DNA and hide for years – without any detectable off-target effects in animals. The work is a significant advance in the generation of a cure for HIV/AIDS in humans.

“Our study supports safety and demonstrates evidence of in vivo SIV editing of a CRISPR gene-editing technology aimed at the permanent inactivation of virus in a broad range of tissues in a large, preclinical animal model, using a one-time injection of the treatment,” said Kamel Khalili, PhD, Laura H. Carnell Professor and Chair of the Department of Microbiology, Immunology, and Inflammation, Director of the Center for Neurovirology and Gene Editing, Director of the Comprehensive NeuroAIDS Center at the Lewis Katz School of Medicine, and senior investigator on the new study.

A massive barred spiral galaxy from the early Universe has stunned astronomers by forming stars at 300 times the rate of the Milky Way, without signs of a galactic collision. Using Webb and ALMA, researchers discovered that its bar structure, rich in gas and similar in shape to modern spirals, is

High manufacturing costs are limiting patient access to CAR T cell therapies, according to new research, which indicates that decentralization, vector-free modification technologies, and AI would help make production cheaper.

Making CAR T therapies is an expensive business. A recent study suggested that producing a single batch can cost anywhere between $170,000 and $220,000, depending on the logistical, processing, and distribution steps involved.

The fundamental problem is that CAR T production is not a good fit for centralized manufacturing, according to Martin Bonamino, PhD, leader of the experimental cancer immunotherapy group at Brazil’s National Cancer Institute (INCA).

Nuclear fusion reactors are highly powerful technologies that can generate energy by fusing (i.e., joining) two light atomic nuclei to form a heavier nucleus. These fusion reactions release large amounts of energy, which can then be converted into electrical power without emitting greenhouse gases.

One of the most reliable and promising fusion reactor designs is the so-called tokamak. Tokamaks are devices that use a doughnut-shaped magnetic field to confine and heat plasma (i.e., superhot, electrically charged gas) for the time necessary for fusion reactions to take place.

Despite their potential for the generation of large amounts of clean energy, future reactor tokamaks may face huge challenges in managing the intense heat produced by . Specifically, some of the confined plasma can interact with the walls of the reactors, damaging them and adversely impacting both their durability and performance.