Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Newly discovered compounds help cells fight a wide range of viruses

Researchers at MIT and other institutions have identified compounds that can fight off viral infection by activating a defense pathway inside host cells. These compounds, they believe, could be used as antiviral drugs that work against not just one but any kind of virus.

The researchers identified these compounds, which activate a host cell defense system known as the integrated stress response pathway, in a screen of nearly 400,000 molecules. In tests in human cells, the researchers showed that the compounds help cells fend off infection from RSV, herpes virus, and Zika virus. They also proved effective in combating herpes infection in a mouse model.

The research team now plans to test the compounds against additional viruses, in hopes of developing them for eventual clinical trials.

Researchers discover how microglia engulf and break down amyloid beta, a protein that builds up in Alzheimer’s

In Alzheimer’s disease, proteins like amyloid beta form clumps, known as plaques, that damage the brain.

But in some people, called microglia break down these proteins before they can cause harm. This leads to fewer and smaller clumps—and much milder symptoms.

Researchers at UC San Francisco identified a molecular receptor that enables microglia to gobble up and digest amyloid beta plaques. The findings are published in the journal Neuron.

New haptic technology adds the sense of touch to virtual reality

USC scientists have developed a wearable system that enables more natural and emotionally engaging interactions in shared digital spaces, opening new possibilities for remote work, education, health care and beyond.

Touch plays a vital role in how humans communicate and bond. From infancy through adulthood, physical contact helps foster emotional bonds, build trust and regulate stress. Yet in today’s increasingly digital world, where screens mediate many of our relationships, it is often missing.

To bridge the gap, researchers at the USC Viterbi School of Engineering have developed a wearable haptic system that lets users exchange physical gestures in and feel them in real time, even when they’re miles apart. Their paper is published on the arXiv preprint server.

Pushing the limits of chip design

Khalifa University is building the foundation for a smarter, more secure and more connected world, one silicon chip at a time.

In the rapidly evolving world of artificial intelligence and smart devices, the System-on-Chip Lab (SoCL) at Khalifa University is emerging as a regional hub of innovation. Led by Baker Mohammad, a professor of Computer and Information Engineering and a veteran with 15 years of experience at tech giants Intel and Qualcomm, the lab is uniquely positioned to bridge the gap between fundamental research and market-ready solutions.

“We’re the only facility in the region with comprehensive expertise across the full electronics design stack, from devices to circuits to systems,” Mohammad explains. This distinctive capability allows the lab to address critical challenges in energy-efficient, high-performance edge devices for data-intensive AI applications, while also integrating hardware security to protect sensitive user data.

Direct electrolysis systems turns waste alkaline water into clean hydrogen

Dr. Sung Mook Choi and his research team at the Energy & Environmental Materials Research Division of the Korea Institute of Materials Science (KIMS) have successfully developed a highly durable non-precious metal-based hydrogen evolution catalyst for use in a direct electrolysis system employing waste alkaline water and anion exchange membranes (AEM). This breakthrough enables the production of clean hydrogen by directly utilizing alkaline wastewater generated from industrial processes.

Hybrid Crystal-Glass Materials from Meteorites Transform Heat Control

Crystals and glasses have opposite heat-conduction properties, which play a pivotal role in a variety of technologies. These range from the miniaturization and efficiency of electronic devices to waste-heat recovery systems, as well as the lifespan of thermal shields for aerospace applications.

The problem of optimizing the performance and durability of materials used in these different applications essentially boils down to fundamentally understanding how their chemical composition and atomic structure (e.g., crystalline, glassy, nanostructured) determine their capability to conduct heat. Michele Simoncelli, assistant professor of applied physics and applied mathematics at Columbia Engineering, tackles this problem from first principles — i.e., in Aristotle’s words, in terms of “the first basis from which a thing is known” — starting from the fundamental equations of quantum mechanics and leveraging machine-learning techniques to solve them with quantitative accuracy.

In research published on July 11 in the Proceedings of the National Academy of Sciences, Simoncelli and his collaborators Nicola Marzari from the Swiss Federal Technology Institute of Lausanne and Francesco Mauri from Sapienza University of Rome predicted the existence of a material with hybrid crystal-glass thermal properties, and a team of experimentalists led by Etienne Balan, Daniele Fournier, and Massimiliano Marangolo from the Sorbonne University in Paris confirmed it with measurements.