Toggle light / dark theme

Mind Control: Past and Future https://www.hks.harvard.edu/sites/default/files/2025-01/24_Meier_02.pdf


On Jan. 28, 2024, Noland Arbaugh became the first person to receive a brain chip implant from Neuralink, the neurotechnology company owned by Elon Musk. The implant seemed to work: Arbaugh, who is paralyzed, learned to control a computer mouse with his mind and even to play online chess.

The device is part of a class of therapeutics, (BCIs), that show promise for helping people with disabilities control prosthetic limbs, operate a computer, or translate their thoughts directly into speech. Current use of the technology is limited, but with millions of global cases of spinal cord injuries, strokes, and other conditions, some estimates put the market for BCIs at around $400 billion in the U.S. alone.

A new discussion paper from the Carr Center for Human Rights welcomes the potential benefits but offers a note of caution drawn from the past, detailing unsettling parallels between an era of new therapies and one of America’s darkest chapters: experiments into psychological manipulation and mind control.

This Collection supports and amplifies research related to SDG 9 Industry, Innovation and Infrastructure, SDG11 Sustainable Cities and Communities, SDG12 Responsible Consumption and Production, and SDG 13 Climate Action.

As the global construction industry strives to reduce its environmental footprint, sustainable processes and materials are becoming increasingly vital. Innovation in cement and concrete technologies plays a key role in minimizing resource consumption, lowering carbon emissions, and enhancing long-term resilience. This collection highlights research that advances both sustainable development and application of cement and concrete for the building sector.

Topics of interest include the development of low-carbon cement alternatives, recycling and reuse of concrete materials, 3D concrete printing, and other energy-efficient construction techniques. We welcome contributions from fundamental material research, to applied solutions and large-scale real-world demonstrations.

Predictions of theories that combine quantum mechanics with gravity could be observed using highly sensitive photon detection in a tabletop experiment.

Quantum-gravity theories attempt to unite gravity and quantum mechanics. A proposed tabletop experiment called Gravity from the Quantum Entanglement of Space Time (GQuEST) would search for a predicted effect of such theories using a new type of interferometer—one that counts photons rather than measuring interference patterns. The GQuEST team has now calculated the sensitivity of their design and shown that it can recover the predicted signal 100 times faster than traditional interferometer setups [1].

Quantizing gravity implies that spacetime is not continuous—it becomes “pixelated” when you look at scales as small as 1035 m, far too small to be probed in any experiment. However, certain quantum-gravity models predict that spacetime can fluctuate—a kind of spontaneous stretching and squeezing in the spacetime fabric that might produce observable effects [2]. “You couldn’t detect a single pixel, but you could detect the coherent fluctuations of many pixels,” says Caltech theorist Kathryn Zurek. She has formulated a “pixellon” model, which predicts that collective fluctuations inside an interferometer can cause a detectable frequency change, or modulation, in the interferometer’s output light [3].

A new study has been published in Nature Communications, presenting the first comprehensive atlas of allele-specific DNA methylation across 39 primary human cell types. The study was led by Ph.D. student Jonathan Rosenski under the guidance of Prof. Tommy Kaplan from the School of Computer Science and Engineering and Prof. Yuval Dor from the Faculty of Medicine at the Hebrew University of Jerusalem and Hadassah Medical Center.

Using machine learning algorithms and deep whole-genome bisulfite sequencing on freshly isolated and purified cell populations, the study unveils a detailed landscape of genetic and epigenetic regulation that could reshape our understanding of gene expression and disease.

A key focus of the research is the success in identifying differences between the two alleles and, in some cases, demonstrating that these differences result from —meaning that it is not the sequence (genetics) that matters, but rather whether the allele is inherited from the mother or the father. These findings could reshape our understanding of gene expression and disease.

However, their reliance on extremely low temperatures has limited their practical applications. Now, scientists may be one step closer to breaking that barrier.

In groundbreaking research led by Professor Kostya Trachenko of the Queen Mary University of London, the maximum temperature at which superconductors can operate has been linked to fundamental constants of nature, such as the electron mass, electron charge, and the Planck constant.

These constants, essential for atomic stability and star formation, set the upper limit for superconducting temperatures between hundreds and a thousand Kelvin. Encouragingly, this range includes room temperature.

A multidisciplinary team of researchers at Georgia Tech has discovered how lateral inhibition helps our brains process visual information, and it could expand our knowledge of sensory perception, leading to applications in neuro-medicine and artificial intelligence.

Lateral inhibition is when certain neurons suppress the activity of their neighboring neurons. Imagine an artist drawing, darkening the lines around the contours, highlighting the boundaries between objects and space, or objects and other objects. Comparably, in the visual system, lateral inhibition sharpens the contrast between different visual stimuli.

“This research is really getting at how our visual system not only highlights important things, but also actively suppresses irrelevant information in the background,” said lead researcher Bilal Haider, associate professor in the Wallace H. Coulter Department of Biomedical Engineering. “That ability to filter out distractions is crucial.”

Oxygen is essential for life and a reactive player in many chemical processes. Accordingly, methods that accurately measure oxygen are relevant for numerous industrial and medical applications: They analyze exhaust gases from combustion processes, enable the oxygen-free processing of food and medicines, monitor the oxygen content of the air we breathe or the oxygen saturation in blood.

Oxygen analysis is also playing an increasingly important role in .

“However, such measurements usually require bulky, power-hungry, and expensive devices that are hardly suitable for mobile applications or continuous outdoor use,” says Máté Bezdek, Professor of Functional Coordination Chemistry at ETH Zurich. His group uses molecular design methods to find new sensors for environmental gases.