Toggle light / dark theme

In a new Physical Review Letters study, researchers propose an experimental approach that could finally determine whether gravity is fundamentally classical or quantum in nature.

The nature of gravity has puzzled physicists for decades. Gravity is one of the four fundamental forces, but it has resisted integration into the quantum framework, unlike the electromagnetic, strong, and weak nuclear forces.

Rather than directly tackling the challenging problem of constructing a complete quantum theory of gravity or trying to detect individual gravitons—the hypothetical mediator of gravity—the researchers take a different approach.

Iron oxide minerals are found in rocks around the globe. Some are magnetic, and some of them rust—especially when exposed to water and oxygen. These characteristics provide clues about the history of these minerals.

Utah State University geoscientists describe a new forensic tool for determining the timing of geochemical oxidation reactions in minerals occurring in the Earth’s crust, which could shed light on how and when large, unexplained gaps in the rock record—known as “unconformities”—developed.

“A challenge for geoscientists is accurately constraining when rocks resided in the near-surface environment,” says Alexis Ault, associate professor in USU’s Department of Geosciences. “It’s tricky to pinpoint the timing of such processes, because the has often been erased.”

The Electronic Frontier Foundation (EFF) has released a free, open-source tool named Rayhunter that is designed to detect cell-site simulators (CSS), also known as IMSI catchers or Stingrays.

Stingray devices mimic legitimate cell towers to trick phones into connecting, allowing them to capture sensitive data, accurately geolocate users, and potentially intercept communications.

With the release of the Rayhunter, EFF seeks to give users the power to detect these instances, allowing them to protect themselves and also help draw a clearer picture of the exact deployment scale of Stingrays.

YouTube warns that scammers are using an AI-generated video featuring the company’s CEO in phishing attacks to steal creators’ credentials.

The attackers are sharing it as a private video with targeted users via emails claiming YouTube is changing its monetization policy.

“We’re aware that phishers have been sharing private videos to send false videos, including an AI generated video of YouTube’s CEO Neal Mohan announcing changes in monetization,” the online video sharing platform warned in a pinned post on its official community website.

In a new development that could help redefine the future of technology, a team of physicists has uncovered a fundamental insight into the upper limit of superconducting temperature.

This research, accepted for publication in the Journal of Physics: Condensed Matter, suggests that room-temperature —long considered the “holy grail” of condensed matter physics—may indeed be possible within the laws of our universe.

Superconductors, materials that can conduct electricity without resistance, have the potential to revolutionize energy transmission, , and quantum computing. However, until now, they have only functioned at , making them impractical for widespread use. The race to find a superconductor that works at ambient conditions has been one of the most intense and elusive pursuits in modern science.

A fundamental goal of physics is to explain the broadest range of phenomena with the fewest underlying principles. Remarkably, seemingly disparate problems often exhibit identical mathematical descriptions.

For instance, the rate of heat flow can be modeled using an equation very similar to that governing the speed of particle diffusion. Another example involves wave equations, which apply to the behavior of both water and sound. Scientists continuously seek such connections, which are rooted in the principle of the “universality” of underlying physical mechanisms.

In a study published in the journal Royal Society Open Science, researchers from Osaka University uncovered an unexpected connection between the equations for defects in a and a well-known formula from electromagnetism.

UC Santa Barbara researchers are working to move cold atom quantum experiments and applications from the laboratory tabletop to chip-based systems, opening new possibilities for sensing, precision timekeeping, quantum computing and fundamental science measurements.

“We’re at the tipping point,” said electrical and computer engineering professor Daniel Blumenthal.

In an invited article that was also selected for the cover of Optica Quantum, Blumenthal, along with graduate student researcher Andrei Isichenko and postdoctoral researcher Nitesh Chauhan, lays out the latest developments and future directions for trapping and cooling the atoms that are fundamental to these experiments—and that will bring them to devices that fit in the palm of your hand.

Recently, a research team found a new way to control the magnetic reversal in a special material called Co3Sn2S2, a Weyl semimetal. The team was led by Prof. Qu Zhe from the Hefei Institutes of Physical Science of the Chinese Academy of Sciences, in collaboration with Prof. Liu Enke from the Institute of Physics of the Chinese Academy of Sciences.

“This discovery could help switch the magnetization of devices that rely on ,” said Prof. Qu, “such as hard drives and spin-based technologies.”

The results were published in Materials Today Physics.

Optical atomic clocks have the potential to improve timekeeping and GPS

GPS, or Global Positioning System, is a satellite-based navigation system that provides location and time information anywhere on or near the Earth’s surface. It consists of a network of satellites, ground control stations, and GPS receivers, which are found in a variety of devices such as smartphones, cars, and aircraft. GPS is used for a wide range of applications including navigation, mapping, tracking, and timing, and has an accuracy of about 3 meters (10 feet) in most conditions.

Scientists are tackling one of the biggest hurdles in quantum computing: errors caused by noise and interference. Their solution? A new chip called Ocelot that uses “cat qubits” — a special type of qubit that dramatically reduces errors. Traditional quantum systems require thousands of extra qubits for error correction, but this breakthrough could slash that number by 90%, bringing us closer to practical, powerful quantum computers m.