Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Temporary retinal inactivation reverses effects of long-term monocular deprivation in visual cortex by induction of burst mode firing in the thalamus

Deprivation amblyopia can be reversed by the temporary inactivation of one eye after the critical period. Here, Echevarri-Leet et al. show that this is caused by increased burst firing in the neurons that relay information from the retina to the visual cortex. Even inactivation of the amblyopic eye can drive recovery.

5 Sci-Fi Fantasies That Could Soon Become Reality

Five sci-fi technologies becoming real today, from BCIs to space elevators.

Get Nebula using my link for 50% off an annual subscription: https://go.nebula.tv/isaacarthur.
Check out Joe Scott’s Oldest & Newest: https://nebula.tv/videos/joescott-oldest-and-newest-places-o…saacarthur.
Watch my exclusive video Chronoengineering: https://nebula.tv/videos/isaacarthur-chronoengineering-manip…technology.

Grab one of our new SFIA mugs and make your morning coffee a little more futuristic — available now on our Fourthwall store! https://isaac-arthur-shop.fourthwall.com/
Visit our Website: http://www.isaacarthur.net.
Join Nebula: https://go.nebula.tv/isaacarthur.
Support us on Patreon: https://www.patreon.com/IsaacArthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-arthur.
Facebook Group: https://www.facebook.com/groups/1583992725237264/
Reddit: https://www.reddit.com/r/IsaacArthur/
Twitter: https://twitter.com/Isaac_A_Arthur on Twitter and RT our future content.
SFIA Discord Server: https://discord.gg/53GAShE
Credits:
5 Sci-Fi Fantasies That Could Soon Become Reality.
Written, Produced & Narrated by: Isaac Arthur.
Editor: Donagh Broderick.
Select imagery/video supplied by Getty Images.

Chapters.
0:00 Intro.
1:52 Brain-Computer Interfaces (BCI)
6:26 Dream Recording & Memory Replay.
8:48 Artificial Wombs & Designer Babies.
16:13 Bio.
18:56 Space Elevators.
21:12 Weather Control.
21:30 Graphene.
22:15 De-Extinciton.
21:40 Superconductors & Fusion.
27:23 Oldest & Newest.
28:26 Preserving & Rebuilding the Human Body.

Cognitive Enhancement through AI: Rewiring the Brain for Peak Performance

TRENDS Research & Advisory strives to present an insightful and informed view of global issues and challenges from a strategic perspective. Established in 2014 as an independent research center, TRENDS conducts specialized studies in the fields of international relations and political, economic and social sciences.

Who Wants to Enhance Their Cognitive Abilities? Potential Predictors of the Acceptance of Cognitive Enhancement

In the 21st century, new powerful technologies, such as different artificial intelligence (AI) agents, have become omnipresent and the center of public debate. With the increasing fear of AI agents replacing humans, there are discussions about whether individuals should strive to enhance themselves. For instance, the philosophical movement Transhumanism proposes the broad enhancement of human characteristics such as cognitive abilities, personality, and moral values (e.g., ; ). This enhancement should help humans to overcome their natural limitations and to keep up with powerful technologies that are increasingly present in today’s world (see ). In the present article, we focus on one of the most frequently discussed forms of enhancement—the enhancement of human cognitive abilities.

Not only in science but also among the general population, cognitive enhancement, such as increasing one’s intelligence or working memory capacity, has been a frequently debated topic for many years (see ). Thus, a lot of psychological and neuroscientific research investigated different methods to increase cognitive abilities, but—so far—effective methods for cognitive enhancement are lacking (). Nevertheless, multiple different (and partly new) technologies that promise an enhancement of cognition are available to the general public. Transhumanists especially promote the application of brain stimulation techniques, smart drugs, or gene editing for cognitive enhancement (e.g., ). Importantly, only little is known about the characteristics of individuals who would use such enhancement methods to improve their cognition. Thus, in the present study, we investigated different predictors of the acceptance of multiple widely-discussed enhancement methods. More specifically, we tested whether individuals’ psychometrically measured intelligence, self-estimated intelligence, implicit theories about intelligence, personality (Big Five and Dark Triad traits), and specific interests (science-fiction hobbyism) as well as values (purity norms) predict their acceptance of cognitive enhancement (i.e., whether they would use such methods to enhance their cognition).

Nanoparticle therapy reprograms tumor immune cells to attack cancer from within

Within tumors in the human body, there are immune cells (macrophages) capable of fighting cancer, but they have been unable to perform their roles properly due to suppression by the tumor. A KAIST research team led by Professor Ji-Ho Park of the Department of Bio and Brain Engineering have overcome this limitation by developing a new therapeutic approach that directly converts immune cells inside tumors into anticancer cell therapies.

In their approach, when a drug is injected directly into a tumor, macrophages already present in the body absorb it, produce CAR (a cancer-recognizing device) proteins on their own, and are converted into anticancer immune cells known as “CAR-macrophages.” The paper is published in the journal ACS Nano.

Solid tumors —such as gastric, lung, and liver cancers—grow as dense masses, making it difficult for immune cells to infiltrate tumors or maintain their function. As a result, the effectiveness of existing immune cell therapies has been limited.

Melanoma cancer cells secrete extracellular vesicles to paralyze immune cells

A new international study led by Prof. Carmit Levy of the Department of Human Genetics and Biochemistry at the Gray Faculty of Medical & Health Sciences at Tel Aviv University finds that melanoma cancer cells paralyze immune cells by secreting extracellular vesicles (EVs), which are tiny, bubble-shaped containers secreted from a given cell. The research team believes that this discovery has far-reaching implications for possible treatments for the deadliest form of skin cancer.

The work is published in the journal Cell.

Melanoma is the deadliest type of skin tumor. In the first stage of the disease, melanocytic cells divide uncontrollably in the skin’s outer layer, the epidermis. In the second stage, the cancer cells invade the inner dermis layer and metastasize through the lymphatic and blood systems.

Currents 072: Ben Goertzel on Viable Paths to True AGI

https://www.jimruttshow.com/currents-ben-goertzel-2/

Jim talks with Ben Goertzel about the ideas in his recent essay “Three Viable Paths to True AGI.” They discuss the meaning of artificial general intelligence, Steve Wozniak’s basic AGI test, whether common tasks actually require AGI, a conversation with Joscha Bach, why deep neural nets are unsuited for human-level AGI, the challenge of extrapolating world-models, why imaginative improvisation might not be interesting to corporations, the 3 approaches that might have merit (cognition-level, brain-level, and chemistry-level), the OpenCog system Ben is working on, whether it’s a case of “good old-fashioned AI,” where evolution fits into the approach, why deep neural nets aren’t brain simulations & attempts to make them more realistic, a hypothesis about how to improve generalization, neural nets for music & the psychological landscape of AGI research, algorithmic chemistry & the origins of life problem, why AGI deserves more resources than it’s getting, why we may need better parallel architectures, how & how much society should invest in new approaches, the possibility of a cultural shift toward AGI viability, and much more.

/* */