Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

AI turns immune cells into precision cancer killers—in just weeks

A breakthrough AI system is revolutionizing cancer immunotherapy by enabling scientists to design protein-based keys that train a patient s immune cells to attack cancer with extreme precision. This method, capable of reducing development time from years to weeks, was successfully tested on known and patient-specific tumor targets. Using virtual safety screenings to avoid harmful side effects, the platform represents a leap forward in personalized medicine.

Brain peptide ODN reduces hunger and boosts glucose regulation in rat study

University of Pennsylvania and Syracuse University scientists have discovered that a hindbrain-derived peptide, octadecaneuropeptide (ODN), can suppress appetite and improve glucose regulation without causing nausea or vomiting. Results suggest a glia-to-neuron signaling axis in the dorsal vagal complex that may be harnessed for treating obesity and type 2 diabetes.

Glial cells in the brainstem produce ODN, a signaling peptide whose physiological role in energy homeostasis has remained obscure. Researchers now find that directly activating this peptide system in the hindbrain induces weight loss, enhances glucose disposal, and lowers in obese animals.

Unlike existing therapies targeting GLP-1 receptors, ODN achieves these effects without triggering nausea-related behaviors or emesis in vomiting-competent models.

Gut microbes could protect us from toxic ‘forever chemicals’

PFAS have been linked with a range of health issues including decreased fertility, developmental delays in children, and a higher risk of certain cancers and cardiovascular diseases.

Scientists at the University of Cambridge have identified a family of bacterial species, found naturally in the human gut, that absorb various PFAS molecules from their surroundings. When nine of these bacterial species were introduced into the guts of mice to ‘humanise’ the mouse microbiome, the bacteria rapidly accumulated PFAS eaten by the mice — which were then excreted in faeces.

The researchers also found that as the mice were exposed to increasing levels of PFAS, the microbes worked harder, consistently removing the same percentage of the toxic chemicals. Within minutes of exposure, the bacterial species tested soaked up between 25% and 74% of the PFAS.

The results are the first evidence that our gut microbiome could play a helpful role in removing toxic PFAS chemicals from our body — although this has not yet been directly tested in humans.


Scientists have discovered that certain species of microbe found in the human gut can absorb PFAS — the toxic and long-lasting ‘forever chemicals.’ They say boosting these species in our gut microbiome could help protect us from the harmful effects of PFAS.

Noninvasive stent imaging powered by light and sound

In a new study, researchers show, for the first time, that photoacoustic microscopy can image stents through skin, potentially offering a safer, easier way to monitor these life-saving devices. Each year, around 2 million people in the U.S. are implanted with a stent to improve blood flow in narrowed or blocked arteries.

“It is critical to monitor for problems such as fractures or improper positioning, but conventionally used techniques require invasive procedures or radiation exposure,” said co-lead researcher Myeongsu Seong from Xi’an Jiaotong-Liverpool University in China. “This inspired us to test the potential of using for monitoring stents through the skin.”

In the journal Optics Letters, the researchers show that photoacoustic microscopy can be used to visualize stents covered with mouse skin under various clinically relevant conditions, including simulated damage and plaque buildup.