Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Genetic variants linked with higher risk of developing bipolar disorder

Bipolar disorder is a mental health condition characterized by extreme mood swings, with alternating periods of depression and manic episodes. Past research suggests that bipolar disorder has a strong genetic component and is among the most heritable psychiatric disorders.

To better understand the that increase the risk of developing this mental health disorder, neuroscientists and geneticists have carried out various genome-wide association studies (GWAS). These are essentially studies aimed at identifying specific regions of the human genome that are linked with an increased risk of having bipolar disorder, also referred to as bipolar risk loci.

While earlier works have identified many of these regions, causal single nucleotide polymorphisms (SNPs) for the disorder are largely unknown. These are essentially genetic variants that primarily contribute to bipolar disorder risk, as opposed to just being mere markers of it.

Neural biomarkers identified for obsessive-compulsive disorder symptoms in deep brain networks

For the first time, researchers at the Netherlands Institute for Neuroscience and Amsterdam UMC have identified what happens in neural networks deep within the brain during obsessive thoughts and compulsive behaviors. Using electrodes implanted in the brain, they observed how specific brain waves became active. These brain waves serve as a biomarker for obsessive-compulsive disorder (OCD) and are an important step towards more targeted treatments.

OCD is a psychiatric disorder in which people suffer from obsessive thoughts (obsessions) and compulsive behaviors (compulsions). A well-known example is fear of contamination: someone is constantly afraid of becoming infected (the obsession) and feels compelled to wash their hands over and over again (the compulsion).

In OCD, communication appears to be disrupted between the , the striatum, and the thalamus, areas of the brain that together form the CSTC circuit. Normally, this circuit mainly coordinates movement and motivation.

Spin waves observed directly at nanoscale for first time

For the first time, spin waves, also known as magnons, have been directly observed at the nanoscale. This breakthrough was made possible by combining a high–energy-resolution electron microscope with a theoretical method developed at Uppsala University. The results open exciting new opportunities for studying and controlling magnetism at the nanoscale.

Seeing the unseen: Laser acceleration technology shows microscopic particle behavior

Researchers from Trinity College Dublin’s School of Engineering have built a powerful new machine that lets us watch precisely what happens when tiny particles—far smaller than a grain of sand—hit a surface at extremely high speeds. It’s the only machine like it in Europe, and it took over two years to design and build.

Supercomputer simulation clarifies how turbulent boundary layers evolve at moderate Reynolds numbers

Scientists at the University of Stuttgart’s Institute of Aerodynamics and Gas Dynamics (IAG) have produced a novel dataset that will improve the development of turbulence models. With the help of the Hawk supercomputer at the High-Performance Computing Center Stuttgart (HLRS), investigators in the laboratory of Dr. Christoph Wenzel conducted a large-scale direct numerical simulation of a spatially evolving turbulent boundary layer.

Using more than 100 million CPU hours on Hawk, the simulation is unique in that it captures the onset of a canonical, fully-developed turbulent state in a single computational domain. The study also identified with unprecedented clarity an inflection point at which the outer region of the turbulent boundary layer begins to maintain a self-similar structure as it moves toward high Reynolds numbers. The results appear in a new paper published in the Journal of Fluid Mechanics.

“Our team’s goal is to understand unexplored parameter regimes in turbulent boundary layers,” said Jason Appelbaum, a Ph.D. candidate in the Wenzel Lab and leader of this research. “By running a large-scale simulation that fully resolves the entire development of turbulence from an early to an evolved state, we have generated the first reliable, full-resolution dataset for investigating how high-Reynolds-number effects emerge.”

Physicists use terahertz light to manipulate electronic properties in 2D materials

Physicists at Bielefeld University and the Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden) have developed a method to control atomically thin semiconductors using ultrashort light pulses. The study, published in Nature Communications, could pave the way for components that are controlled at unprecedented speeds directly by light—ushering in a new generation of optoelectronic devices.

New method simplifies analysis of complex quantum systems with strong interactions

A research team led by TU Darmstadt has transformed a difficult problem in quantum physics into a much simpler version through innovative reformulation—without losing any important information. The scientists have thus developed a new method for better understanding and predicting difficult quantum mechanical systems. The study is published in Physical Review Letters.

This problem has long preoccupied : How can systems consisting of many atoms, between which strong attractive forces act, be described mathematically? Already for about 10 particles, such systems are at the limits of current numerical methods.

It becomes particularly complicated when the atoms are exposed to an external force. However, this is the case in many experiments with cold atoms due to the way in which motion is restricted to one dimension, for example. Such systems of strongly interacting particles in one dimension were proposed in the 1960s and have since served as a reference problem in theoretical physics. So far, they have only been solved in a few special cases.

Theory-guided strategy expands the scope of measurable quantum interactions

A new theory-guided framework could help scientists probe the properties of new semiconductors for next-generation microelectronic devices, or discover materials that boost the performance of quantum computers.

Research to develop new or better materials typically involves investigating properties that can be reliably measured with existing , but this represents just a fraction of the properties that scientists could potentially probe in principle. Some properties remain effectively “invisible” because they are too difficult to capture directly with existing methods.

Take electron–phonon interaction—this property plays a critical role in a material’s electrical, thermal, optical, and superconducting properties, but directly capturing it using existing techniques is notoriously challenging.

Coordinated defect arrangement shown to boost superconductivity in new study

An international team of scientists, including physicists from HSE MIEM, has demonstrated that when defects within a material are arranged in a specific pattern rather than randomly, superconductivity can occur at a higher temperature and extend throughout the entire material. This discovery could help develop superconductors that operate without the need for extreme cooling.

The study has been published in Physical Review B.

Superconductivity is a state in which electric current flows through a material without any . In conventional conductors, part of the energy is converted into heat, but in superconductors, this does not occur—current flows freely and does not weaken. Today, superconductors are used in applications such as MRI machines, where superconducting coils generate strong magnetic fields.

Scientists Use Cryptography To Unlock Secrets of Quantum Advantage

Researchers use cryptography to gain insights into the mechanisms behind quantum speed-ups. Quantum computing is widely regarded by experts as the next major leap in computer technology. Unlike traditional computers, which process information in binary (0s and 1s), quantum computers make use of u