Toggle light / dark theme

The researchers discovered that AP2A1 seemed to be responsible for switching cells between their “young” and “old” states—senescent cells were rejuvenated by the suppression of the protein, and younger cells aged by its overexpression.

The scientists also found that the AP2A1 was frequently in close proximity to another protein: integrin β1, which aids cells in binding to the collagen scaffold that envelops them. Both proteins, the researchers described, travel along stress fibers within cells.

A new species of bacteria that functions like electrical wiring has recently been discovered on a brackish beach in Oregon. The species was named Candidatus Electrothrix yaqonensis in honor of the Yaquina tribe of Native Americans that once lived in and around Yaquina Bay, where the bacteria were found.

This species is a type of cable bacteria: rod-shaped microbes that are connected at both ends to one another to create a chain and which share an outer membrane, forming filaments several centimeters long. Cable bacteria are found in marine and freshwater sediments and, unusually among bacteria, are electrically conductive. This is due to their special metabolism, in which electrons generated by oxidizing sulfides in their deeper layers are sent to their surface layer, where they are received by oxygen and nitric acid.

Chinese researchers have developed a wireless, paper-thin patch that attaches to an organ to create a highway for drug delivery.

To solve an important problem in drug delivery, a research team that includes Beihang University and Peking University developed an electronic patch that acts like a band-aid for organs.

Traditional drug delivery systems send a vague package through the body that requires higher doses than necessary and might harm organs in the process of trying to find their destination. Large-molecule drugs, or biopharmaceuticals based on proteins, face an even greater challenge as the cell membrane often blocks these drugs, according to CGTN.

Thin film solar cells can be integrated into unexpected surfaces, such as building facades, windows, or the growing floating solar market. Thin film’s flexibility opens doors to new applications and helps overcome some of the barriers that have long limited the adoption of solar energy.

A lot of the interest in thin film solar technologies is coming from one company, based right in the heart of the UK: Power Roll. The County Durham-based firm has spent years exploring how to make thin, flexible solar cells that can be applied almost anywhere and has recently been hitting major milestones in commercialising the technology in an effort to get it out across the world.

Solar Power Portal sat down with Power Roll CEO Neil Spann to explore how thin film solar could deliver the government’s promised “rooftop revolution” and how Power Roll’s unique manufacturing process can make solar power a cheap reality worldwide.

IN A NUTSHELL 🔬 Scientists at the University of South China have developed innovative algorithms to optimize radiation shielding for next-generation nuclear reactors. 💡 The newly created algorithms, RP-NSGA and RP-MOABC, significantly improve performance by integrating a reference-point-selection strategy with established optimization techniques. 📈 Experiments demonstrated that these algorithms achieve substantial reductions in volume and.