Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Quantum key distribution method tested in urban infrastructure offers secure communications

In the era of instant data exchange and growing risks of cyberattacks, scientists are seeking secure methods of transmitting information. One promising solution is quantum cryptography—a quantum technology that uses single photons to establish encryption keys.

A team from the Faculty of Physics at the University of Warsaw has developed and tested in a novel system for quantum key distribution (QKD). The system employs so-called high-dimensional encoding. The proposed setup is simpler to build and scale than existing solutions, while being based on a phenomenon known to physicists for nearly two centuries—the Talbot effect. The research results have been published in the journals Optica Quantum, Optica, and Physical Review Applied.

“Our research focuses on quantum key distribution (QKD)—a technology that uses single photons to establish a secure cryptographic key between two parties,” says Dr. Michał Karpiński, head of the Quantum Photonics Laboratory at the Faculty of Physics, University of Warsaw.

Finding buried treasures with physics: ‘Fingerprint matrix’ method uncovers what lies beneath the sand

Can we reveal objects that are hidden in environments completely opaque to the human eye? With conventional imaging techniques, the answer is no: a dense cloud or layer of material blocks light so completely that a simple photograph contains no information about what lies behind it.

However, a between the Institut Langevin and TU Wien has now shown that, with the help of innovative mathematical tricks, objects can be detected even in such cases—using what is known as the fingerprint .

The team tested the newly developed method on metal objects buried in sand and in applications in the field of medical imaging. A joint publication on this topic has just been published in the journal Nature Physics.

Supercritical fluids once thought uniform found to contain liquid clusters

A supercritical fluid refers to a state in which the temperature and pressure of a substance exceed its critical point, where no distinction exists between liquid and gas phases. Traditionally, it has been regarded as a single, uniform phase. However, a research team at POSTECH (Pohang University of Science and Technology) experimentally demonstrated nonequilibrium phase separation within supercritical fluids by observing nanometer-sized “liquid clusters” that persist for up to one hour.

The research team led by Professor Gunsu Yun from the Division of Advanced Nuclear Engineering and the Department of Physics at POSTECH, in collaboration with Dr. Jong Dae Jang’s group at the Korea Atomic Energy Research Institute (KAERI), Professor Min Young Ha at Kyung Hee University, and Dr. Changwoo Do’s team at Oak Ridge National Laboratory (ORNL) in the U.S., experimentally verified the existence of nano-clusters that exist separately in a liquid-like state within previously considered a uniform phases.

The experiment utilized the Small-Angle Neutron Scattering (SANS) instrument at Korea’s neutron research facility, HANARO.

Meet Irene Curie, the Nobel-winning atomic physicist who changed the course of modern cancer treatment

The adage goes “like mother like daughter,” and in the case of Irene Joliot-Curie, truer words were never spoken. She was the daughter of two Nobel Prize laureates, Marie Curie and Pierre Curie, and was herself awarded the Nobel Prize in chemistry in 1935 together with her husband, Frederic Joliot.

While her parents received the prize for the discovery of natural radioactivity, Irene’s prize was for the synthesis of artificial radioactivity. This discovery changed many fields of science and many aspects of our everyday lives. Artificial radioactivity is used today in medicine, agriculture, energy production, food sterilization, industrial quality control and more.

We are two nuclear physicists who perform experiments at different accelerator facilities around the world. Irene’s discovery laid the foundation for our experimental studies, which use artificial radioactivity to understand questions related to astrophysics, energy, medicine and more.

White Rabbit optical timing technology meets quantum entanglement

A small yet innovative experiment is taking place at CERN. Its goal is to test how the CERN-born optical timing signal—normally used in the Laboratory’s accelerators to synchronize devices with ultra-high precision—can best be sent through an optical fiber alongside a single-photon signal from a source of quantum-entangled photons. The results could pave the way for using this technique in quantum networks and quantum cryptography.

Research in is growing rapidly worldwide. Future quantum networks could connect quantum computers and sensors, without losing any . They could also enable the secure exchange of information, opening up applications across many fields.

Unlike classical networks, where information is encoded in binary bits (0s and 1s), quantum networks rely on the unique properties of quantum bits, or “qubits,” such as superposition (where a qubit can exist in multiple states simultaneously) and entanglement (where the state of one qubit influences the state of another no matter how far apart they are).

Saturn’s Icy Moon Enceladus Blasts Water Into Space: New Simulations Decode Its Secrets

Simulations indicate that Saturn’s moon Enceladus ejects less ice into space than previously estimated. In the 1600s, astronomers Christiaan Huygens and Giovanni Cassini aimed their telescopes at Saturn and made a groundbreaking discovery. What appeared to be glowing bands around the planet were no

Mystery Ozone Surge Discovered in Mars’s Winter Darkness

Scientists have captured rare insights into Mars’s north polar vortex, where temperatures plunge far below those outside its boundaries and darkness triggers an unusual surge in ozone. New observations of Mars’s north polar vortex during winter reveal that conditions inside it are far more extrem

/* */