Failing to see any high-energy neutrinos allowed researchers to calculate an upper limit on the fraction of high-energy cosmic rays that are protons.

One of the greatest revolutions in the field of pain medication was the isolation of morphine from the opium poppy in the 19th century. Morphine molecules act as painkillers by attaching themselves to the µ-opioid receptor (MOR) in the central nervous system and blocking the brain from sending pain signals to the rest of the body. This potent opioid analgesic also has side effects such as constipation, respiratory depression, and even serious addiction problems.
A new study published in the Proceedings of the National Academy of Sciences has found that a single heavy atom replacement in the morphine core structure can transform its pharmacological behavior, resulting in reduced respiratory depression and no evidence of reward behavior—a key component of addiction tendencies—even at high doses.
Based on the insight that core-atom changes to the opioid drug molecule may exhibit biological effects distinct from the parent compound, the researchers developed a 15-step total synthesis of a morphine derivative where an oxygen atom in the E-ring is replaced with a methylene (CH2) group and called the new derivative carbamorphine.
Using the TUBITAK National Observatory and ESA’s Gaia satellite, astronomers from the Istanbul University in Turkey and elsewhere have conducted comprehensive observations of two open clusters, namely: Czernik 41 and NGC 1342. Results of the observational campaign, published July 7 on the arXiv preprint server, deliver important insights into the properties of these clusters.
Open clusters (OCs) are groups of stars formed from the same giant molecular cloud and loosely gravitationally bound to each other. Astronomers are interested in inspecting OCs in detail as such studies could be crucial for improving our understanding of the formation and evolution of our galaxy.
That is why a group of researchers led by Istanbul University’s Burçin Tanık Öztürk decided to take a closer look at two well-known OCs—Czernik 41, discovered in 1966, and NGC 1,342, dubbed the Stingray Cluster, which was identified by William Herschel in 1799. For this purpose, they employed the T100 telescope at the TUBITAK National Observatory in Turkey and analyzed the data from the Gaia satellite.
University of Leeds psychologists report that stress appraisal and perceived stress act as key conduits linking childhood trauma to adult depression, anxiety, defeat, and entrapment.
Childhood trauma affects nearly one third of young people in the United Kingdom. Early experiences of abuse or neglect have been associated with depression, anxiety, post-traumatic stress disorder, and substance use later in life.
Exposure to multiple types of trauma has been linked to higher rates of suicidal thoughts and suicide attempts. Females who experience childhood sexual abuse can face substantially elevated risks of attempting suicide compared to peers without such histories.
An international team of astronomers has uncovered new evidence to explain how pulsing remnants of exploded stars interact with surrounding matter deep in the cosmos, using observations from NASA’s IXPE (Imaging X-ray Polarimetry Explorer) and other telescopes.
Scientists based in the U.S., Italy, and Spain, set their sights on a mysterious cosmic duo called PSR J1023+0038, or J1023 for short. The J1023 system is comprised of a rapidly rotating neutron star feeding off of its low-mass companion star, which has created an accretion disk around the neutron star. This neutron star is also a pulsar, emitting powerful twin beams of light from its opposing magnetic poles as it rotates, spinning like a lighthouse beacon.
The J1023 system is rare and valuable to study because the pulsar transitions clearly between its active state, in which it feeds off its companion star, and a more dormant state, when it emits detectable pulsations as radio waves. This makes it a “transitional millisecond pulsar.”
Researchers at EPFL and Kyoto University have created a stable hydrogen-rich liquid formed by mixing two simple chemicals. This breakthrough could make hydrogen storage easier, safer, and more efficient at room temperature.
Hydrogen can be the clean fuel of the future, but getting it from the lab to everyday life isn’t simple. Most hydrogen-rich materials are solids at room temperature, or they only become liquids under extreme conditions like high pressure or freezing temperatures.
Even materials such as ammonia borane, a solid, hydrogen-rich compound that can store a lot of hydrogen, are difficult because they release hydrogen only when heated, often producing unwanted byproducts.
The mechanical strength and toughness of engineering materials are often mutually exclusive, posing challenges for material design and selection. To address this, a research team from The Hong Kong Polytechnic University (PolyU) has uncovered an innovative strategy: by simply twisting the layers of 2D materials, they can enhance toughness without compromising material’s strength.
This breakthrough facilitates the design of strong and tough new 2D materials, promoting their broader applications in photonic and electronic devices. The findings have been published in Nature Materials.
While 2D materials often exhibit exceptional strength, they are extremely brittle. Fractures in materials are also typically irreversible. These attributes limit the use of 2D materials in devices that require repeated deformation, such as high-power devices, flexible electronics and wearables.
The Maxwell–Boltzmann distribution describes the probability distribution of molecular speeds in a sample of an ideal gas. Introduced over 150 years ago, it is based on the work of Scottish physicist and mathematician James Clerk Maxwell (1831–1879) and Austrian mathematician and theoretical physicist Ludwig Boltzmann (1844–1906).
Today, the distribution and its implications are commonly taught to undergraduate students in chemistry and physics, particularly in introductory courses on physical chemistry or statistical mechanics.
In a recent theoretical paper, I introduced a novel formula that extends this well-known distribution to real gases.
A team of scientists led by expert Raúl Jiménez, ICREA researcher at the University of Barcelona’s Institute of Cosmos Sciences (ICCUB), in collaboration with the University of Padua (Italy), has presented a revolutionary theory about the origins of the universe. The study, published in the journal Physical Review Research, introduces a radical change in the understanding of the first moments after the Big Bang, without relying on the speculative assumptions that physicists have traditionally assumed.
For decades, cosmologists have worked under the inflationary paradigm, a model that suggests that the universe expanded extremely rapidly, in a fraction of a second, thus paving the way for everything we observe today. But this model includes too many adjustable parameters—the free parameters—which can be modified. Scientifically, this poses a problem, as it makes it difficult to know whether a model is truly predicting or simply adapting to the data.
In a significant breakthrough, the team has proposed a model in which the early universe does not require any of these arbitrary parameters. Instead, it begins with a well-established cosmic state called De Sitter space, which is consistent with current observations of dark energy.