Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Modular network offers fault-tolerant scaling of superconducting qubit devices

Quantum computers, devices that can perform computations relying on the principles of quantum mechanics, are expected to outperform classical computers on some types of optimization and processing tasks. While physicists and engineers have introduced various quantum computing systems over the past decades, reliably scaling these systems so that they can tackle real-world problems while correcting errors arising during computations has so far proved challenging.

Researchers at the University of Illinois at Urbana-Champaign recently introduced a new, modular quantum architecture for scaling superconducting quantum processors in a fault-tolerant, scalable and reconfigurable way. Scaling in a fault-tolerant way is required to maintain the and conditions necessary to perform long-term quantum computations.

Their proposed system, outlined in a paper published in Nature Electronics, is comprised of several modules (i.e., superconducting devices) that can operate independently and be connected to others via a low-loss interconnect, forming a larger quantum network.

Simulations prove early Earth’s liquid core generated protective magnetic field

Earth is fortunate in having a magnetic field: it protects the planet and its life from harmful cosmic radiation. Other planets in our solar system—such as Mars—are constantly bombarded by charged particles that make life difficult.

Physicists still divided about quantum world, 100 years on

The theory of quantum mechanics has transformed daily life since being proposed a century ago, yet how it works remains a mystery—and physicists are deeply divided about what is actually going on, a survey in the journal Nature said Wednesday.

“Shut up and calculate!” is a famous quote in that illustrates the frustration of scientists struggling to unravel one of the world’s great paradoxes.

For the last century, equations based on have consistently and accurately described the behavior of extremely small objects.

Liquid droplets trained to play tic-tac-toe

Artificial intelligence and high-performance computing are driving up the demand for massive sources of energy. But neuromorphic computing, which aims to mimic the structure and function of the human brain, could present a new paradigm for energy-efficient computing.

To this end, researchers at Lawrence Livermore National Laboratory (LLNL) created a droplet-based platform that uses ions to perform simple neuromorphic computations. Using its ability to retain , the team trained the droplet system to recognize handwritten digits and play tic-tac-toe. The work was published in Science Advances.

The authors were inspired by the , which computes with ions instead of electrons. Ions move through fluids, and moving them may require less energy than moving electrons in solid-state devices.

Stitched for strength: The physics of jamming in stiff, knitted fabrics

School of Physics Associate Professor Elisabetta Matsumoto is unearthing the secrets of the centuries-old practice of knitting through experiments, models, and simulations. Her goal? Leveraging knitting for breakthroughs in advanced manufacturing—including more sustainable textiles, wearable electronics, and soft robotics.

Matsumoto, who is also a principal investigator at the International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2) at Hiroshima University, is the corresponding author on a new study exploring the physics of ‘’—a phenomenon when soft or stretchy materials become rigid under low stress but soften under higher tension.

The study, “Pulling Apart the Mechanisms That Lead to Jammed Knitted Fabrics,” is published in Physical Review E, and also includes Georgia Tech Matsumoto Group graduate students Sarah Gonzalez and Alexander Cachine in addition to former postdoctoral fellow Michael Dimitriyev, who is now an assistant professor at Texas A&M University.

Compact setup successfully detects elusive antineutrinos from nuclear reactor

Neutrinos are extremely elusive elementary particles. Day and night, 60 billion of them stream from the sun through every square centimeter of Earth every second, which is transparent to them. After the first theoretical prediction of their existence, decades passed before they were actually detected. These experiments are usually extremely large to account for the very weak interaction of neutrinos with matter.

Scientists at the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg have now succeeded in detecting antineutrinos from the reactor of a using the CONUS+ experiment, with a detector mass of just 3 kg. The work is published in Nature.

Originally based at the Brokdorf nuclear power plant, the CONUS experiment was relocated to the Leibstadt nuclear power plant (KKL) in Switzerland in the summer of 2023. Improvements to the 1 kg germanium semiconductor detectors, as well as the excellent measurement conditions at KKL, made it possible for the first time to measure what is known as Coherent Elastic Neutrino-Nucleus Scattering (CEvNS).

This One Sleep Habit Could Be Secretly Wrecking Your Health

New research reveals that irregular sleep patterns, not just how long we sleep, may significantly raise the risk of numerous diseases. A major international study published in Health Data Science has revealed strong links between sleep patterns and the development of 172 different diseases. By ex

Columbia Engineers Develop Radiation-Hardened Chips for the Large Hadron Collider

In one of the most extreme environments on Earth—the Large Hadron Collider—normal electronics fail almost instantly. But engineers at Columbia University have created custom microchips that not only survive the collider’s intense radiation but play a pivotal role in unlocking the secrets of the univ