Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Genetically modified gut bacteria show promise for combating kidney stones in clinical trial

The human gut microbiome has been shown to impact health in a myriad of ways. The type and abundance of different bacteria can impact everything from the immune system to the nervous system. Now, researchers at Stanford University are taking advantage of the microbiome’s potential for fighting disease by genetically modifying certain bacteria to reduce a substance that causes kidney stones. If scientists are successful at modifying gut bacteria, this can lead to therapeutic treatments for a wide range of diseases.

However, the study, published in Science, shows that this is not a simple task. The researchers used the bacterium Phocaeicola vulgatus, which is already found in the microbiome of humans, and modified it to break down and also to consume porphyran, a nutrient derived from seaweed. The porphyran was used as a way to control the population of Phocaeicola vulgatus by either adding more porphyran or reducing the amount, which should kill off the bacteria due to a lack of food.

The study was made up of three parts: one testing the modified bacteria on rats, one trial with healthy humans and one trial on people with enteric hyperoxaluria (EH). EH is a condition in which the body absorbs too much oxalate from food, leading to and other kidney issues, if not treated.

Scientists twist DNA into self-building nanostructures that could transform technology

Scientists have used DNA's self-assembling properties to engineer intricate moiré superlattices at the nanometer scale—structures that twist and layer like never before. With clever molecular “blueprints,” they’ve created customizable lattices featuring patterns such as honeycombs and squares, all with remarkable precision. These new architectures are more than just scientific art—they open doors to revolutionizing how we control light, sound, electrons, and even spin in next-gen materials.

Rapidus Prototypes 2-nm Transistors for 2027 Ramp

Last month, Japanese startup foundry Rapidus began prototyping 2-nanometer gate-all-around (GAA) transistors at its new facility, a key step toward ramping up its first production in 2027.

The foundry, which aims to compete with TSMC and Samsung in leading-edge chips for AI, said in a press statement that in about three years, it has reached target milestones, including the fab groundbreaking in September 2023, clean room completion in 2024, and, in June this year, the installation of production equipment.

Rapidus and TSMC are two chipmakers that the Japanese government is relying on to revive the nation’s declining semiconductor industry. Rapidus, if successful, will make leading-edge 2-nm chips for companies like IBM. TSMC is producing 12-to 28-nanometer chips for image sensors and automotive applications at its base in Kumamoto, Japan.

Life on Venus? Probe mission could search Venus clouds for unexplained hydrogen-rich gases

The answer to whether tiny bacterial life-forms really do exist in the clouds of Venus could be revealed once and for all by a UK-backed mission.

Over the past five years, researchers have detected the presence of two potential biomarkers—the gases phosphine and ammonia—which on Earth can only be produced by biological activity and industrial processes.

Their existence in the Venusian clouds cannot easily be explained by known atmospheric or geological phenomena, so Cardiff University’s Professor Jane Greaves and her team are plotting a way to get to the bottom of it.

Wellesley team’s new research on anesthesia unlocks important clues about the nature of consciousness

For decades, one of the most fundamental and vexing questions in neuroscience has been: what is the physical basis of consciousness in the brain? Most researchers favor classical models, based on classical physics, while a minority have argued that consciousness must be quantum in nature, and that its brain basis is a collective quantum vibration of “microtubule” proteins inside neurons.

New research by Wellesley College professor Mike Wiest and a group of Wellesley College undergraduate students has yielded important experimental results relevant to this debate, by examining how anesthesia affects the brain. Wiest and his research team found that when they gave rats a drug that binds to microtubules, it took the rats significantly longer to fall unconscious under an anesthetic gas. The research team’s microtubule-binding drug interfered with the anesthetic action, thus supporting the idea that the anesthetic acts on microtubules to cause unconsciousness.

“Since we don’t know of another (i.e,. classical) way that anesthetic binding to microtubules would generally reduce brain activity and cause unconsciousness,” Wiest says, “this finding supports the quantum model of consciousness.”

Apple Can’t Keep Up With Tesla: Here’s Why

Tesla, led by its innovative and dynamic leadership, is poised for massive growth and has surpassed Apple, which has lost its edge due to poor management and a lack of innovation, in areas such as autonomous vehicles and tech innovation.

Questions to inspire discussion.

Tesla’s Innovation Strategy.
🚀 Q: How does Tesla’s vertical integration contribute to its innovation? A: Tesla’s vertical integration enables it to control the entire product stack, from raw materials to software and service, allowing for tight feedback loops, cost reduction, and rapid iteration in product development.

Newly discovered ‘cosmic unicorn’ is a spinning dead star that defies physics: ‘We have a real mystery on our hands’

That implies the radio wave blasts of CHIME J1634+44 are being generated in a way that is unique for this dead star.

What is also weird about these pulses is the fact that they arrive in pairs, but only when the dead star in the CHIME J1634+44 binary has spun several times without emitting a burst.

“The time between pulse pairs seems to follow a choreographed pattern,” team member and ASTRON astronomer Harish Vedantham said in a statement. “We think the pattern holds crucial information about how the companion triggers the white dwarf to emit radio waves.