Toggle light / dark theme

China’s dependence on foreign suppliers of computer chips could undermine the country’s transition to electric vehicles, tech traders and researchers say.

The shortage of chips, or semiconductors, is more acute in China than elsewhere and could hit the nation’s EV momentum, according to CATARC, the China Automotive Technology and Research Center, because its fledgling domestic chipmaking industry is unlikely to be in a position to cope with demand within the next two to three years, it says.

With delivery delays of up to a year, that means carmakers in China are occasionally being forced to pay expensive premiums to chip brokers in cities like Shenzhen, where there is a “grey market” trade in semiconductors.

Now, an international team of researchers has developed a tower that uses solar energy to produce a synthetic alternative to fossil-derived fuels like kerosene and diesel. The fuel production system uses water, carbon dioxide (CO2), and sunlight to produce aviation fuel. The team has implemented the system in the field, and the design could help the aviation industry become carbon neutral.

The solar-made kerosene is fully compatible with the existing aviation infrastructure for fuel storage, distribution, and end use in jet engines. It can also be blended with fossil-derived kerosene, says Aldo Steinfeld, a professor from ETH Zurich and the corresponding author of the paper.

The solar fuel production plant consists of 169 sun-tracking reflective panels that redirect and concentrate solar radiation into a solar reactor mounted on top of a tower. The concentrated solar energy then drives oxidation-reduction (redox) reaction cycles in the solar reactor, which contains a reticulated porous ceramic structure made of ceria. The ceria – which is not consumed but can be used over and over – convert water and CO2 injected into the reactor into syngas, a tailored mixture of hydrogen and carbon monoxide. Subsequently, syngas is sent into a gas-to-liquid converter, where it is finally processed into liquid hydrocarbon fuels that include kerosene and diesel.

Within a given tissue or organ, cells may appear very similar or even identical. But at the molecular level, these cells can have small differences that lead to wide variations in their functions.

Alex K. Shalek, an MIT associate professor of chemistry, relishes the challenge of uncovering those small distinctions. In his lab, researchers develop and deploy technologies such as single-cell RNA-sequencing, which lets them analyze differences in gene expression patterns and allows them to figure out how each cell contributes to a tissue’s function.

“Single-cell RNA-sequencing is an incredibly powerful way to examine what cells are doing at a given moment. By looking at associations among the different mRNAs that cells express, we can identify really important features of a tissue — like what cells are present and what are those cells trying to do,” says Shalek, who is also a core member of MIT’s Institute for Medical Engineering and Science and an extramural member of the Koch Institute for Integrative Cancer Research, as well as a member of the Ragon Institute of MGH, MIT and Harvard and an institute member of the Broad Institute of Harvard and MIT.

A team of researchers from Lawrence Livermore National Laboratory (LLNL) and the University of Michigan has found that the rate of cooling in reactions dramatically affects the type of uranium molecules that form.

The team’s experimental work, conducted over about a year and a half starting in October 2020, attempts to help understand what uranium compounds might form in the environment after a nuclear event. It has recently been detailed in Scientific Reports.

“One of our most important findings was learning that the rate of cooling affects the behavior of uranium,” said Mark Burton, the paper’s lead author and a chemist in the Lab’s Materials Science Division. “The big picture here is that we want to understand uranium chemistry in energetic environments.”

Wireless charging roads equipped with energy storage systems are promising electric vehicle solutions by virtue of their strong advantages in time saving and reduced pressure on the existing power infrastructure, according to a paper by Cornell researchers published this month in Applied Energy.

The electric vehicle (EV) industry has experienced remarkable expansion and technical development during the last decade. It is estimated that EVs will comprise 48%, 42% and 27% of light-duty vehicle sales in China, Europe and the United States, respectively, by 2030, according to co-authors H. Oliver Gao, the Howard Simpson Professor of Engineering, and Jie Shi, a former Cornell systems postdoctoral researcher.

Integration of charging into the existing electricity market and efficient management of the corresponding energy storage system are crucial for successful implementation of the wireless charging road systems.

It’s estimated that about 100 million black holes roam around our Milky Way Galaxy — and for the first time ever, astronomers now believe they may have precisely measured the mass of an isolated black hole with Hubble.

Roaming black holes are born from rare, monstrous stars that are at least 20 times more massive than our Sun. After these stars explode in a supernova, the remnant core is crushed by gravity into a black hole. Because this self-detonation isn’t perfectly symmetrical, the black hole might get “kicked” and careen through our galaxy.

Astronomers believe that the isolated black hole measured by Hubble is traveling across the Milky Way at 100,000 miles per hour (160,000 kph). That’s fast enough to get from Earth to the Moon in less than three hours!

Read more about this discovery: https://go.nasa.gov/3mx6t6p.

#NASA #Hubble #BlackHole #astronomy #science #universe #astrophysics #space #stars #galaxy