Toggle light / dark theme

This week our guest academic philosopher, Susan Schneider, who is the founding director for the Center for the Future Mind at Florida Atlantic University, as well as the author of the 2019 book, Artificial You: AI and the Future of Your Mind. In this episode we focus heavily on Susan’s thoughts, hopes, and concerns surrounding the current conversations regarding artificial intelligence. This includes, but is certainly not limited to, the philosophical and ethical questions that AI presents in general, the feasibility of mind uploading and machine consciousness, the ways we may end up outsourcing our decision making to machines, how we might merge with machines, and how these potential tech futures might impact identity and sense of self. You can learn more about Susan at schneiderwebsite.com, and find out how to get involved with her work at fau.edu/future-mind ** Host: Steven Parton — LinkedIn / Twitter Music by: Amine el Filali.

41 MINS

To grow a building at jerusalem design week 2022 For Jerusalem Design Week 2022, the 11th edition of Israel’s foremost annual design event, a group of designers took to Hansen House to present ‘To Grow a Building’, an outdoor performative lab that imagined the possibility of a world in which…


Jerusalem design week 2022 presents ‘to grow a building’, a performative lab that imagines a 3D printed organic architecture.

Molecular computing is a promising area of study aimed at using biological molecules to create programmable devices. This idea was first introduced in the mid-1990s and has since been realized by several computer scientists and physicists worldwide.

Researchers at East China Normal University and Shanghai Jiao Tong University have recently developed molecular convolutional (CNNs) based on synthetic DNA regulatory circuits. Their approach, introduced in a paper published in Nature Machine Intelligence, overcomes some of the challenges typically encountered when creating efficient artificial neural networks based on molecular components.

“The intersection of computer science and is a fertile ground for new and exciting science, especially the design of intelligent systems is a longstanding goal for scientists,” Hao Pei, one of the researchers who carried out the study, told TechXplore. “Compared to the brain, the scale and computing power of developed DNA neural networks are severely limited, due to the size limitations. The primary objective of our work was to scale up the computing power of DNA circuits by introducing a suitable model for DNA molecular systems.”